

Effects of Heat Stress and an Encumbered Aviator Uniform on Flight Performance in a UH-60 Helicopter Simulator

By

Matthew J. Reardon Nicholas Smythe, III Julia Omer Beth Helms Art Estrada Marjorie Freeze J. Darrell Hager

19970321 108

Aircrew Health and Performance Division

February 1997

DTIC QUALITY INSPECTED 3

Approved for public release, distribution unlimited.

U.S. Army Aeromedical Research Laboratory Fort Rucker, Alabama 36362-0577

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Human use

Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRMC Reg 70-25 on Use of Volunteers in Research.

Reviewed:

JEFFREY C. RABIN

LTC, MC

Director, Aircrew Health and Performance

Division

JOHN A. CALDWELL, JR

Chairman, Scientific Review Committee Released for publication:

DENNIS F. SHANAHAN

Colonel, MC, MFS

Commanding

M97-06-4078

SECURITY C	17	SSIFICATION OF	THIS PAGE

REPORT DOCUMENTATION					ON PAGE			Form Approved OMB No. 0704-0188		
1a. REPORT Unclass	SECURITY CLAS	SIFICATION	1		1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY					3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release, distribution unlimited					
2b. DECLASS	SIFICATION / DOV	MNGRADIN	G SCHEDULE		uniiiiice					
	I <mark>NG ORGANIZAT</mark> Report No				5. MONITORING	ORGANIZATION REPOR	T NUMBER(S)		
U.S. Ar	PERFORMING C my Aerome h Laborat	dical	ION	6b. OFFICE SYMBOL (If applicable) MCMR-UAD		ONITORING ORGANIZATI y Medical Rese		nd Materiel		
P.O. Bo	S (City, State, and ex 620577 acker, AL		-0577		Fort Det:	City, State, and ZIP Code) rick k, MD 21702-5	012			
8a. NAME OF ORGANIZ	FUNDING / SPO	NSORING		8b. OFFICE SYMBOL (If applicable)	9. PROCUREME	NT INSTRUMENT IDENTI	FICATION N	UMBER		
PM ALSI		7/0.0.1.		SFAE-AV-LSE	10. SOURCE OF	FUNDING NUMBERS				
	G(City, State, and Codfellow		ard		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.		
St Loui	is, MO 631	20-179	8		0602787A	3M162787A879	NO.			
(U) Eff UH-60 H	elicopter LAUTHOR(S)	eat Št: Simula	ator	an Encumbered				<u></u>		
M.J. Reardon; N. Smythe, III; J. Omer; B. Helms; A. Estrada; M. Freeze; and J. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE						GE COUNT				
Final			FROM	ТО		ebruary		122		
16. SUPPLEM	ENTAL NOTATIO	in								
17. FIELD	COSATI CO		GROUP	18. SUBJECT TERMS (Co		necessary and identify by b formance, simu				
06	10	308	GROOF	aircrew prote	ctive ensem	mbles, workload	d, MATB	, spectral		
analysis, UH-60, and MOPP 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The effects on flight performance of the four combinations of an unencumbered level-zero mission oriented protective posture (MOPP) 0 aviator battle dress uniform (ABDU) and encumbered MOPP4 over ABDU flight ensemble in cool (70°F, 50 percent relative humidity [RH]) and hot (100°F, 50 percent RH) UH-60 simulator cockpit conditions were evaluated with a repeated measures, 2 by 2 factorial study using nine crews. This report describes the flight performance results; a previous report provided detailed analysis of the physiological and psychological responses. The use of detailed flight scripts and performance criteria for each type of maneuver maintained uniformity for flight performance evaluation across the four test conditions. Every 30 minutes, the right seat pilot encountered instrument meteorological conditions and ascended to 2000 feet to perform a 10-minute set of standard maneuvers. These maneuvers included straight and level (SL), right standard rate turn (RSRT), left climbing turn (LCT), and left descending turn (LDT). After each iteration of the set of standard maneuvers, the pilot returned to nap-of-the-earth (NOE) and contour flight between control points. The right seat pilot also performed four 1-minute hovers (HOVs) and hover turns (HOVTs) in the first 2-hour										
UNCLAS	TION / AVAILABIL SSIFIED/UNLIMIT	ED	SAME AS RPT	DTIC USERS	Unclassif			CE CYMPO!		
Chief,	RESPONSIBLE Science S	upport			(334) 255		MCMR-	CE SYMBOL UAX-SI		
DD E 4	472 HIN OC	•		Previous editions are	obsolete.	SECURIT	Y CLASSIFIC	CATION OF THIS PAGE		

19. Abstract (continued).

sortie and three in the second 2-hour sortie. The simulator's data acquisition system captured relevant combinations of airspeed, altitude, turn and climb rates, trim, and roll for each type of flight maneuver, as well as cyclic and collective inputs during HOV and HOVT. When averaged across iterations of flight maneuvers flown with either the automatic flight control system fully engaged (AFCS on) or with the trim and flight stabilization components turned off (AFCS off), the encumbered MOPP4 uniform was associated with reduced (p<0.05) averaged composite scores (ACS) for five (HOV, HOVT, RSRT, SL, and contour) of eight (62.5 percent) maneuvers. ACS values were significantly lower for 5 of $\bar{2}9$ (17.2 percent) separately scored flight systems parameters. The hot temperature condition, as a main effect, reduced the ACS for only one (RSRT) of eight maneuvers. For the iterations of the maneuvers flown with AFCS on, the encumbered MOPP4 ensemble was associated with significantly lower ACS for 3 (HOV, HOVT, and contour) of 8 (37.5 percent) maneuvers and 5 of the 29 (17.2 percent) separately scored flight parameters. With AFCS off, the encumbered MOPP4 uniform significantly degraded the composite ACS for 2 (SL and LDT) (50 percent) of 4 maneuvers (SL, RSRT, LCT, and LDT) comprising the set of standard maneuvers that were alternately flown with AFCS off and 5 of 17 (29.4 percent) separately scored flight parameters. The hot temperature was associated with reduced composite ACS values for two (RSRT and LCT) of the four flight maneuvers. The encumbered MOPP4 uniform had the most frequent adverse effect on flight performance followed by heat stress with less frequent effects from the combination or interaction of these two factors. There were no statistically significant increases in simulator crashes, main rotor or stabilator strikes, or other recorded incidents for the hot or encumbered MOPP4 conditions. Flight parameter scores were more sensitive in detecting differences in simulator performance across test conditions than root mean square errors or maximum and minimum deviations from target performance values. This study confirmed that heat stress and wearing an encumbered U.S. Army MOPP4 flight uniform significantly reduced endurance and flight performance in a UH-60 simulator.

Acknowledgments

First, we extend our sincerest appreciation to the highly professional, courageous, and patient Army aviators (active duty and National Guard) who volunteered for this demanding study. Working with them was the most enjoyable part of the study, we wish them the best wherever they may be today. We would also like to acknowledge the many additional personnel who contributed to the successful completion of this study. CW5 (Ret) Larry Woodrum generated detailed flight scripts from the basic concepts for the flight profiles, served as the UH-60 simulator operator during the initial phases of the study, and thoroughly trained a backup operator. Richard Cline, Charles Brown, Tom Schnormeier, and Robert Vandervelde of Hughes Technical Support Services did an excellent job keeping the simulator and its environmental control systems on line with only 1 lost test day over the 4 month duration of this study. Alan Lewis, USAARL's biomedical engineer, and Robert Dillard, electronics technician, did a great job building, testing, calibrating, and troubleshooting the simulator's data acquisition system. They also corrected occasional problems with electronic components and installed the heat lamps. Dr. Heber Jones and Andy Higdon set up the database files and software for the simulator's "HAWK" data acquisition systems and assisted in accessing the complex flight performance data. James Burkett skillfully built and installed a fold-away stand into the simulator for the multi-attribute task battery computer performance test. Dan Ranchino assisted with PC hardware and software problems encountered during data analysis and document development. Lastly, our thanks to LTC Malcolm Braithwaite, for support as the study's medical monitor.

Table of contents

<u>ray</u>	ᆮ
Introduction	1
General effects of heat stress on task performance	2
Effects of CB protective ensembles on performance	4
USAARL evaluations of heat stress, CB ensembles, and flight performance	5
Methods and procedures	7
Study Design	7
Environmental conditions	7
Flight uniforms	8
UH-60 helicopter simulator	0
UH-60 automatic flight control system 1	1
UH-60 simulator flight profiles	2
Multi-attribute test battery (MATB) 1	5
Task load ratings 1	8
Sequence of events in the study	9
Results 2	1
Test subjects 2	.2
Environmental conditions	2
Endurance 2	:3
Flight performance results	:3
Average composite scores	:6
Root mean squared errors (RMSEs) 3	0
Maximum and minimum values 3	4
Correlations between flight performance scores and aviator characteristics	7
Spectral analysis of cyclic and collective inputs	7

Table of contents (continued)

		Page
	Simulator incidents	38
	MATB	39
	Task load index questionnaire	39
Di	iscussion	40
	UH-60 simulator flight performance	41
	TLX questionnaire	42
	MATB	42
Co	onclusions	43
Re	eferences	45
	Appendices	
	/ ipportations	
A.	Flight scripts	48
В.	Test subject demographics	58
C.	Flight performance tables	61
D.	Flight performance charts	79
E.	Spectral analysis of cyclic and collective inputs	93
F.	MATB performance and scripts	
G.	TLX questionnaire	. 107
Н.	Correlation tables	. 110
I.	Data collection forms and procedures	118
J.	Manufacturers and product information	122

Table of contents (continued)

List of figures

	<u>Pag</u>	Ē
1.	Photos of the aviator uniform components	9
2.	First 2-hour sortie: Air assault	3
3.	Second 2-hour sortie: MEDEVAC 1	
4.	Multi-attribute task battery (MATB) display	
5.	Heat stress study process	O
6.	Aviator endurance	4
	List of tables	
1.	Flight performance RMS errors	5
2.	Air warrior heat stress study aviator ensembles	8
3.	MATB performance data	8
4.	Scoring bands for flight performance deviations from target values	5
5.	Flight performance standards by data channel and maneuver	5
6.	Three-way repeated measures ANOVA for flight performance: ACS scores	7
7a.	Repeated measures ANOVA results for flight performance scores	8
7b.	Repeated measures ANOVA results for flight performance scores	9
8.	Effects of encumbered MOPP4 ensemble in hot conditions on average composite flight scores	O
9a.	Repeated measures ANOVA results for flight performance RMSE	1

Table of contents (continued)

	<u> </u>	<u>age</u>
9b.	Repeated measures ANOVA results for flight performance RMSE (continued)	32
10.	Effects of encumbered MOPP4 ensemble in hot conditions on RMSE for maneuvers	34
11.	Fraction of maneuver types having statistically worse flight performance	35

Introduction

During hot weather, aviators are often exposed to substantial heat stress outdoors during preflight duties and while flying unair-conditioned aircraft. The environmental components of heat stress include ambient temperature, humidity, wind speed, and radiant heat load. Such measures can be combined into a single indicator such as the wet bulb globe temperature (WBGT). The WBGT is a weighted sum of three temperatures: (0.7 x naturally convected wet bulb temperature) + (0.2 x black globe temperature) + (0.1 x shaded dry bulb temperature).

The wet bulb temperature accounts for the effects of humidity and wind on heat stress. The black globe accounts for radiant heat loads from solar and other sources, and the shaded dry bulb accounts for the intrinsic thermal content of the ambient air. The coefficients, or weights, in the WBGT formula above, determine the relative contribution of the environmental components represented by the three methods of temperature measurement to heat stress for humans. One of the most useful aspects of the WBGT is that the different combinations of wet bulb, dry bulb, and black globe temperatures resulting in identical WBGT values define conditions of equivalent heat stress. A local ambient WBGT is a relatively good predictor of physiological heat strain and probability of heat illness except when very occlusive, impermeable clothing or overgarments are worn. In the latter situation, a significant disparity can develop between the WBGT in the microclimate of the highly saturated air layer between the skin and inner layer of clothing (usually not measured) and the ambient WBGT.

Numerous field studies have confirmed the frequent occurrence of very elevated cockpit temperatures in helicopters exposed to hot weather conditions. Breckenridge and Levell (1970) documented WBGTs greater than $104\,^{\circ}F$ and dry bulb air temperatures up to $132\,^{\circ}F$ in the closed cockpit of a stationary AH-1G attack helicopter parked in the direct sun during summertime at a military facility in Georgia. Froom et al. (1991) showed that during standby for takeoff, cockpit WBGT in a Bell 212 helicopter initially was $2.9 \pm 3.7\,^{\circ}C$, and after 1 hour $7.2 \pm 3.5\,^{\circ}C$, higher than ambient WBGT. In a study by Thornton and Guardiani (1992), WBGTs in the cockpit of a hovering UH-60 transport helicopter with doors and windows closed during summertime were approximately $5\,^{\circ}C$ higher than airfield WBGTs (approximate range: $28-35\,^{\circ}C$ or $82.5-95\,^{\circ}F$). In contrast, cockpit and airfield WBGTs did not differ much during contour flight.

These data are of great concern because U.S. Army aviators frequently train or deploy to areas in the United States or overseas with very hot summer climates and intense solar radiation. Furthermore, operational requirements in such locations may necessitate that pilots don overgarments and personal survival components to protect against ballistic, chemical, or biological (CB) threats. Additionally, during aviation operations in CB threat scenarios pilots may also need to fly with closed aircraft doors and windows in order to minimize ingress of potentially lethal CB warfare agents into

the aircraft cabin. In hot weather conditions, or in moderate temperature conditions with high humidity or intense solar load, a closed unair-conditioned helicopter cockpit will result in heat stress even if crewmembers wear unencumbered, light weight, standard issue flight uniforms. The addition of relatively occlusive and cumbersome overgarments and protective equipment will additively or synergistically exacerbate the ambient heat stress. There are multiple potential sources of heat stress within helicopter cockpits including heat transfer into the cockpit from the external environmental and direct solar radiation, increased cockpit air temperature from the greenhouse effect, as well as intrinsic conduction and radiation of heat from internal thermal sources such as engines, auxiliary power units, and various electronic systems.

In general, heat stress induces many complex and interrelated compensatory physiological and biochemical thermoregulatory changes, or adaptations, which are collectively termed heat strain (Wyndham, 1973). Although the adverse performance effects of mild to moderate heat stress in laboratory studies and field evaluations have often been relatively small and their operational significance not well defined, it is common knowledge that incapacitating heat illness will occur if thermal stress is sufficiently intense or the exposure excessively prolonged. Obviously, inflight heat exhaustion and heat stroke are emergencies that will result either in a crash for a single pilot aircraft, or require an immediate landing or diversion of missions to the nearest medical unit for a two pilot aircraft. Heat stress is a ubiquitous and potentially serious threat that should not be underestimated by aircrews. Since pilots are frequently responsible for the lives of many passengers during a mission, it is incumbent on them and aviation unit leaders to minimize the risk of heat stress related impairment of aircrew health and performance.

General effects of heat stress on task performance

There are a multitude of references in literature on the effects of heat stress on various types of performance. Most, however, have reported results only for relatively simple mental, cognitive, or other perceptual tests, time estimation, reaction time, tracking, and vigilance. Some papers have presented results of more complex real-world tasks such as operating vehicles. The relationships between performance on simple tasks and highly complex tasks such as piloting military helicopters have not been well defined or validated. Furthermore, results from different studies have frequently been contradictory or of questionable significance because of the occurrence of relatively small performance differences across the different levels of the principal factors (which frequently were not well controlled).

In a review of reports published between 1979 and 1991, Ramsey (1995) elucidated a number of potential reasons for variance in findings across different heat stress and performance studies. In most of the reported studies, many potential confounders were not controlled for, nor were sufficient data collected on them to allow adjustment for

their effects during statistical analysis. Some of the potential confounders listed by Ramsey include: core temperature, effects of task variations, extent of acclimatization, state of mental acuity and interest, amount of previous training and skill levels, type of clothing, variations in work load, comfort, and cumulative stress load.

The principal conclusions regarding the effects of heat stress exposure on task performance in the review by Ramsey were that mental and simple motor tasks are not affected much by heat stress, whereas performance on more complex psychomotor tasks becomes adversely affected, in a statistically significant sense, when ambient WBGTs reach or exceed the 30-33°C (86-91.4°F) range. Many studies have indicated performance decrements occurring soon after exposure to intense heat stress conditions even before core temperature had time to rise significantly. This indicates that heat stress intensity, as well as duration of exposure, interact to impact negatively on task performance. Ramsey points out, however, that few studies determined whether there was an association between statistically significant decrements in performance found in laboratory studies and operationally significant performance decrements that would affect mission accomplishment, safety, or accident rates.

Ramsey's meta-analysis did not lead to any quantitative description of the relationship between the severity of heat stress and degree of performance decrements. However, Berglund et al. (1990), provide an example of a model based on data from a British Navy study that evaluated the effects of heat stress on error rates for decoding Morse code. That quantitative model indicated a subjective thermoneutral air temperature of 25°C (77°F). At greater air temperatures, it predicted a linear increase in thermal discomfort ratings. Similarly, decoding error rates were predicted to increase in a near-linear manner above 26°C (78.8°F).

Kobrick and Johnson (1992) also presented a review of the literature on the effects of heat stress and performance that included many references published prior to 1979. Although this review also revealed some conflicting results between studies evaluating similar tasks under similar conditions, as conditions became more thermally stressful, results became more consistent. At higher levels of thermal stress, decrements in visual and auditory vigilance, marksmanship, pointer alignment, manual tracking, 5-choice task, and short term memory became apparent.

Hancock (1982) presented a graphical depiction of the amount of core temperature elevation (as a function of effective temperature and exposure time) required to cause significant decrements in performance for three different task categories (dual task, tracking, and mental). His analysis indicated that core temperature increases of only 0.4°F, 1.6°F, and 3.0°F would be sufficient to cause observable decrements in dual task performance, tracking, and mental tasks, respectively. The hotter the ambient conditions, the sooner these core temperature thresholds and associated performance

decrements become apparent. The task performance was affected according to their degree of response complexity.

It has been generally recognized that a higher level of skill in performing a complex task is partially protective against heat stress induced performance decrements. This is probably because the more a task is practiced, ingrained, and understood, the less the implicit response complexity. Requirements for intense concentration on the various aspects of a task and the need for continuous real-time cognitive decision making regarding the details of the task are diminished with increasing skill. Therefore, greater skill with a particular task effectively reduces the task difficulty and makes it less susceptible to the effects of heat stress.

Effects of CB protective ensembles on performance

MOPP is a military acronym for mission oriented protective posture. It is associated with four levels of increasing personal protection against CB threats. Commanders designate what MOPP level is appropriate for their units based primarily on estimates obtained from intelligence sources on the nature and immediacy of CB threats. MOPP components include a CB absorbent overgarment, CB mask, and impermeable hood, gloves, and boots. All of these components are worn simultaneously for level four MOPP (MOPP4) CB protection. Although there has been a continuous but slow evolution in the design and biophysical properties of MOPP4 components, complete MOPP4 ensembles are still bulky, encumbering, and prevent efficient thermoregulation.

Taylor and Orlansky (1993), after an extensive review of the literature, provided a comprehensive summary of the effects of MOPP4 on individual and unit performance. On an individual basis, CB masks typically impair vision, auditory acuity, and speech transmission. Visual difficulties while wearing CB masks may contribute to longer scan times and more difficult tracking when engaged in target search and track activities. CB masks also increase the work of breathing, respiratory function, and can elicit anxiety, claustrophobic reactions, and hyperventilation (Muza et al., 1995). The butyl rubber gloves have been associated, in laboratory tests, with significantly increased completion times for manual dexterity tasks. Lussier and Fallesen (1987) showed that MOPP4 caused an 8 percent performance decrement on 11 computer keyboard tasks. Task training or practice while in MOPP4 can reduce some of its adverse effects on performance.

United States Army Aeromedical Research Laboratory (USAARL) evaluations of heat stress, CB ensembles, and flight performance

Hamilton et al. (1982) performed a study to delineate the effects of three different aviator ensembles on UH-1 flight performance during hot weather conditions. The uniforms tested included what was then the standard aircrew battle dress uniform (ABDU) MOPP0 and MOPP4 U.S. Army aviator uniforms and a British MOPP4 flight ensemble. Six volunteer UH-1 pilots participated in the repeated measures, fully counterbalanced, study design. However, due to aircraft problems, data for only four pilots were available for analysis. Three types of maneuvers were flown: straight and level, lateral hover with hover turns at specified locations, and a 50- foot hover. Analysis of error data for the measured parameters did not reveal significant flight performance differences between the three different uniforms.

Knox et al. (1983) recruited eight aviators to compare the physiological, psychological, and flight performance effects of aviators wearing either a standard ABDU MOPP0 flight uniform or a MOPP4 ensemble. Inflight testing was performed in a UH-1 helicopter during hot summer weather. Comparisons of root mean squared (RMS) flight performance errors for the standard uniform and nuclear, biological and chemical (NBC) ensemble are summarized in table 1 below.

<u>Table 1.</u>
Flight performance RMS errors (Knox et al., 1983).

Performance Parameter	Standard Flight Uniform	NBC Ensemble
Heading error (degrees)	1.63	2.02
Airspeed error (knots)	1.83	2.19
Time to complete maneuvers error (secs)	0.93	1.08
Straight flight heading error (degrees)	1.47	1.58
Straight flight airspeed error (knots)	1.27	1.86

None of the differences in RMS errors across type of flight uniform reached statistical significance at the $p \le 0.05$ level. However, there did seem to be a trend (6/8 test subjects) for somewhat worse performance for the MOPP4 ensemble. Again, the statistical power available in the analysis was not discussed. As in Hamilton's study, there also was no test to determine whether the distribution profile of environmental conditions for test iterations were statistically different across the two different uniforms. Inflight turbulence, which was not estimated, could have been a source of increased variance in flight performance that obscured main effects. Unmeasured variations in

ambient and cockpit temperatures, humidity, and solar load could also have contributed to variance in the measures. An experimental design was required where these potentially obfuscating sources of variance in flight performance could either be eliminated or controlled.

Thornton et al. (1992) completed a comparative evaluation of flight performance in the USAARL UH-60 simulator for two flight uniforms in two carefully controlled environmental conditions. The uniforms were a standard one-piece U.S. Army MOPP0 flight uniform versus a MOPP4 aircrew uniform integrated battlefield (AUIB) ensemble encumbered with ballistic plate and various ancillary items of personal survival equipment. Cockpit WBGT in the UH-60 simulator was 17.9°C (64.2°F) for the cool, or baseline, condition and 30.6°C (87.1°F) for the hot condition. Flight performance data revealed significant differences across the four test conditions for 46 percent of the combinations of measured navigational parameters and maneuver type. The most consistent statistically significant differences in flight parameter RMS errors across the test conditions occurred for heading, vertical speed, rate of turn, airspeed, roll and altitude, in that order. Differences in RMS slip errors were not consistent across the four test conditions. Maximum RMS errors for heading and altitude were significantly greater for the MOPP4 AUIB-hot condition. Disconnecting the trim and flight stabilization components of the automatic flight control system had an independent effect of increasing flight parameter errors, except for roll error, which was paradoxically reduced.

The main effect of heat stress for the aviators wearing the MOPP4 AUIB was a statistically significant increase in RMS error for some flight performance parameters. In an absolute sense, however, the RMS errors were not very large. It was proposed that maximum, rather than RMS, flight parameter error might be a more accurate predictor of operationally significant decrements in flight performance such as those (e.g., infrequent but large altitude deviations) that could directly lead to aircraft accidents (e.g., crashing into terrain or obstacles). This line of reasoning was reinforced when significant flight incidents were tabulated and analyzed. Seven crashes occurred during the UH-60 simulator sessions. These were primarily due to the aviators flying into terrain or trees. Six of the seven accidents occurred while wearing the MOPP4 AUIB ensemble. Four of those occurred in the hot condition and two in the cool condition.

Current U.S. Army aviator ensembles include the two-piece ABDU, as well as the battle dress overgarment (BDO). The BDO is worn over the ABDU to protect against CB warfare threats. In an encumbered configuration, an aviation life support equipment (ALSE) vest, a laminated ballistic protection plate, and overwater personal floatation devices are also worn over the BDO. Previously reported physiological results from this study conclusively showed that, in hot conditions, the bulky encumbered MOPP4

ensemble is uncomfortable and significantly impairs thermoregulation and heat dissipation (Reardon et al., 1996).

Reardon et al. (1996) describes the effects of cockpit heat stress and the two flight ensembles (the unencumbered MOPP0 ABDU and encumbered MOPP4 BDO over ABDU) on UH-60 simulator flight performance and workload ratings. The study was conducted between 25 March - 2 August 1996 to fulfill collaborative U.S. Army Aviation and Troop Command (ATCOM)-USAARL objectives in a governing statement of work (SOW, USAARL, 1995). The primary objectives of the study were:

- Develop and test a general methodology for evaluating the extent to which aviator ensembles contribute to heat strain and affect flight performance, mission accomplishment, endurance, and mood states in hot versus temperate UH-60 simulator cockpit conditions.
- 2. Establish a baseline heat stress effects profile for current unencumbered and encumbered aviator ensembles against which future enhanced versions of those ensembles may be compared as they are developed under the aegis of the Air Warrior Program Manager, Aircrew Integrated Systems, ATCOM, St. Louis, MO.

Methods and procedures

Study design

This study utilized military helicopter pilots in a two-by-two factorial, repeated measures, partially counterbalanced, unblinded experimental design to evaluate the direct and interaction effects of two types of current aviator uniform (unencumbered MOPP0 ABDU vs. encumbered MOPP4 over ABDU) and two cockpit thermal conditions (cool vs. hot) on flight performance in a UH-60 simulator, performance on a computerized multi-task test, and work load ratings. Flight performance data were obtained from nine different pilots and performance data for the multi-task computer test were obtained from a different set of eight pilots. Work load ratings were obtained from all the pilots.

Environmental conditions

The cool simulator condition consisted of a dry bulb temperature (T_{db}) of $70^{\circ}F$ (21.1°C) and 50 percent relative humidity (RH). The hot condition utilized a T_{db} of $100^{\circ}F(37.8^{\circ}C)$ and 50 percent RH. The WBGT values for the two conditions in the simulator included the effects of radiant energy emitted by three sets of heat lamps situated above each pilot's helmet. The two banks of three heat lamps each, located in

the simulator ceiling above each pilot's seat, were set at 50 percent maximum output (see appendix J for the heat lamp's spectral output). Conditions in the environmental chamber during the 20-minute simulated preflights had the same temperature settings but lower relative humidity (20 percent). It was not feasible to install heat lamps in the environmental chamber. Humidity in the UH-60 simulator was set at a higher value to emulate the increase in humidity that occurs when doors and windows are closed in an actual UH-60 in similar ambient environmental conditions.

Flight uniforms

Table 2 lists the components of the two aviator ensembles utilized in this study, and is followed by figure 1, which depicts test subjects wearing the encumbered MOPP4 BDO over ABDU ensemble.

<u>Table 2.</u>
Air Warrior heat stress study aviator ensembles.

ITEMS	Unencumbered MOPP0 ABDU	Encumbered MOPP4 BDO over ABDU
HGU-56P	x	х
ABDU	х	х
Combat boots	x	х
Flight gloves (summer light)	х	х
Kneeboard	х	х
SARVIP vest with mod	×	х
SARVIP 0.50 cal armor		х
SARVIP packs		х
M43A1 CB Mask		х
BDO		х
PRC-112A survival radio		х
LPU-21 a/P water wings		x
LRU-18P raft		x
SRU-37/P container (raft)		x
HEED		x

Figure 1. Photos of the aviator uniform components.

UH-60 helicopter simulator

The USAARL UH-60 research simulator was used for obtaining flight performance measurements. Its hydraulic motion base provides 6 degrees freedom of motion allowing for acceleration cues in the lateral, longitudinal, vertical directions and allowing pitch, roll, and yaw over a 60 degree range. The simulator has a three-channel, four-window, digital image generator (DIG). Using digitized terrain map data, the DIG continuously generates three separate, but synchronized, out-the-cockpit video scenes displayed by four cathode ray tube (CRT) units. The forward scenery is displayed by the CRT in each of the front windscreens while the left and right scenery are transmitted to the CRT for their respective cockpit window.

The UH-60 research simulator is equipped with an environmental control unit (ECU) that maintains specified target dry bulb temperature and RH in the cockpit during the study. The ECU is capable of controlling cockpit conditions within a range of 68-105 °F (± 3 °F) and 50-90 percent RH (± 3 percent).

The flight instruments and controls in the UH-60 simulator were directly linked to a real-time data acquisition system controlled by a Digital Equipment Corporation (DEC) VAX 11/780 computer¹*. This 128 channel, automated data acquisition system continuously captured flight performance data at a 30 hertz (Hz) sampling rate (USAARL, HAWK Manual, 1991). The system continuously recorded cockpit instrument data such as airspeed, altitude, roll, pitch, and slip. Cyclic and collective inputs during hover and hover turn maneuvers were also automatically recorded at a 10 Hz sampling rate. These flight data were stored on magnetic media linked to a DEC-VAX computer system. The data were then downloaded and analyzed with spreadsheet (EXCEL-Microsoft Office Professional)*, graphing, and statistical software (SPSS and Statistica) on desktop computers.

An additional computer-based data acquisition system was also installed in the simulator to provide 16 additional input data channels to record physiological data from the aviator test subjects. This supplementary data acquisition system permitted continuous monitoring of test subject physiological responses to ensure compliance with core temperature and heart rate limits imposed by the USAARL Human Use Committee.

Four continuously recording video cameras and voice recorders were used to monitor the volunteer pilots when they were in the simulator. Research technicians were able to slew these cameras using a control device located in the rear area of the simulator cockpit. A forward-looking camera fixed to the top of the instrument

^{*} See list of manufacturers in Appendix J

glareshield allowed remote monitoring of the view out the left front window. The other cameras were oriented to provide close-up, uninterrupted, remote monitoring of the appearance and responsivity of the test subjects throughout the simulator sessions. The volunteer aviators were informed about the camera system and all provided written consent to be recorded and photographed during the study.

UH-60 automatic flight control system

Like the actual UH-60 Blackhawk helicopter, the USAARL UH-60 simulator is equipped with an automatic flight control system (AFCS) which enhances stability and handling qualities (Department of the Army, Technical Manual 1-1520-237-10). The AFCS has four subsystems: the stabilator, the stability augmentation system (SAS), the trim system, and flight path stabilization (FPS). The stabilator, a 14 foot by 4-inch variable angle-of-incidence airfoil, provides control in the pitch axis and a level attitude at a hover. The SAS enhances dynamic stability in all axes, thus preventing "porpoising" in the pitch axis, rolling in the roll axis and "fishtailing" in the yaw axis. The trim system consists of three trims for pitch, roll, and yaw axes. The trim function provides cyclic (pitch and roll) and pedal (yaw) flight control position reference and control gradient to maintain the cyclic stick and pedals at a desired position. To change or reset the pitch or roll trims, the pilot can:

- a. Depress the cyclic trim release button, establish the new pitch or roll reference, and release the trim release button.
- b. Move the trim switch (also on the cyclic) to establish the new pitch or roll reference.
- c. Move the cyclic, then depress the trim release button or move the trim switch to neutralize the force on the cyclic.

Flight path stabilization is also provided for the pitch, roll and yaw axes. FPS provides very low frequency dampening (static stability). FPS functions maintain helicopter pitch attitude/airspeed hold, roll attitude hold, and heading hold and automatic turn coordination. FPS provides the following:

- a. Pitch axis--attitude/airspeed hold.
- b. Roll axis--bank angle/attitude hold.
- c. Yaw axis, below 60 knots--heading hold.
 Yaw axis, above 60 knots--heading hold and automatic turn coordination. (Maintains the aircraft in trim during a turn.)

During simulator flights in this study, the stabilator and SAS were always active. However, the trim system and FPS were deactivated for the 10-minute duration of every other set of standard maneuvers (starting with the second set). This degraded the AFCS thereby requiring more pilot control inputs and significantly increased pilot work load. For the sake of brevity, we henceforth refer to conditions where all components of the AFCS were on as "AFCS on" and conditions where the trim system and FPS components of the AFCS were off as "AFCS off."

UH-60 simulator flight profiles

Four simulator test sessions were conducted on 4 consecutive test days (Monday through Thursday). Each test session consisted of two flight profiles, or sorties, lasting approximately 2 hours each. These scenarios were representative of realistic UH-60 helicopter missions (USAAC,1989). A 10-minute simulated hot refueling break was provided between the two 2-hour sorties.

The first sortie was an air assault (AA) mission, which required the volunteer pilots to leave an airfield, fly to a landing zone (LZ), simulate off-loading an AA squad, fly away from the LZ on a designated flight path, return to the LZ, pick up the squad, and then return to the initial airfield (figure 2).

The second sortie was a medical evacuation (MEDEVAC) mission. This mission required the pilots to fly from a primary airfield to a secondary airfield, simulate the pickup of a MEDEVAC patient, and return to the initial airfield by a second route (figure 3).

During each sortie, the right seat pilot flew eight types of maneuvers as indicated by the mission scripts. Those maneuvers included: hover (HOV), hover turn (HOVT), right standard rate turn (RSRT), left descending turn (LDT), straight and level (SL), left climbing turn (LCT), contour, and nap-of-the-earth (NOE). Custom USAARL software automatically scored performance for the selected channels (e.g., airspeed, radar altitude, climb rate, turn rate, etc.).

Each sortie began at a simulated airfield. The first maneuver was a 1-minute 10-foot hover at a heading of 360° during which only radar altitude was scored. The next maneuver at the same location was a 1-minute 360° hover turn at 10 feet. Heading and radar altitude were scored during hover turns.

The crew then departed the airfield and proceeded to successive control points along the flight path, flying both contour and NOE as specified by the mission scripts (appendix A). Contour flying required the pilot to maintain 80 feet of radar altitude while NOE required the aircraft to be kept at 25 feet above the ground or highest obstacle

Figure 2. First 2-hour sortie: Air assault.

Figure 3. Second 2-hour sortie: MEDEVAC.

(eg., simulated trees). While flying in these modes, the pilots maintained heading determined by the direction to the next way point and flew at airspeeds sufficient to allow arrival at each control point within the desired time intervals. Heading, radar altitude, roll and slip were scored during NOE and contour flight modes.

During each of the two 2-hour sorties, the simulator operator caused a rapidly obscuring fog to develop every 30 minutes at the end of specific contour or NOE segments. This created instrument meteorological conditions (IMCs) to which the right seat pilot responded by ascending to 2000 feet at 500 feet per minute. On arrival at 2000 feet, the pilot commenced a 10-minute set of standard maneuvers composed of a sequence of four distinct maneuvers (SL, RSRT, LCT, and LDT). Eight sets of standard maneuvers were scheduled during each test session, four during the 2-hour AA sortie, and four during the 2-hour MEDEVAC sortie.

The first standard maneuver was SL at 2000 feet for 1 minute. This maneuver was scored on heading, indicated altitude, airspeed, roll and slip. An RSRT consisting of a 360° turn at a rate of 3° per second was then completed and scored on indicated altitude, airspeed, roll angle, and turn rate. Another 1-minute SL maneuver followed this and was scored the same as the first.

The pilot then performed an LCT with a 500 feet-per-minute rate of climb while turning 180° from the original heading at a rate of 3° per second. Scoring on this maneuver was on airspeed, climb rate, turn rate, and slip. A third 1-minute SL segment was completed and scored the same as the two previous SLs. The pilot then completed an LDT. This maneuver was performed and scored the same as the LCT. A final minute of SL flight completed the set of standard maneuvers. The pilot then descended out of IMC to resume visual flight rules (VFR) contour or NOE flight segments between designated way points according to the mission scripts.

During contour and NOE segments of each sortie (AA and MEDEVAC), the pilots were allowed to transfer flight control so that the right seat pilot could take an occasional break from flying, adjust uniform components or seat position to relieve pressure points, maintain hydration by drinking water from a standard issue canteen, and eat a small snack.

Multi-attribute test battery (MATB)

Every 30 minutes, as the right seat pilot encountered IMC conditions and began the ascent from contour or NOE level to 2000 feet indicated altitude to fly an iteration of the 10-minute set of standard maneuvers, the left seat pilot unstowed a laptop computer to simultaneously perform a 10-minute medium difficulty-level MATB*. Data from the MATB provided additional measures of the effects of aviator ensemble and environmental conditions on cognitive performance, tracking, situational awareness,

reaction times, and accuracy of responses to visual and auditory cues. An objective of including the MATB in the study was to determine the correlation between MATB results and the flight performance scores obtained during the corresponding simultaneously occurring set of standard flight maneuvers.

The MATB (figure 4) is a computer-based, aviation-related, synthetic task battery and performance assessment tool. It was initially developed by NASA researchers (Comstock and Arnegard, 1992) and is currently available from the Federal Aviation Administration's Civilian Aeromedical Research Institute (CAMI) in Oklahoma City, Oklahoma.

The MATB requires a test subject to simultaneously:

- 1. Detect changes in the condition of simulated warning lights and deviations of four strip gauges greater than ± 1 unit from midpoints and respond to changes by pressing the appropriate key on a computer keyboard.
- 2. Maintain cross hairs on a centrally fixed target with a joystick controller.
- 3. Detect the pilot's assigned call sign and message amid extraneous simulated radio traffic. The relevant messages require changing radio channels and frequencies. Simulated radio frequency changes are implemented by the test subject as accurately and quickly as possible via the computer keyboard.
- 4. Maintain simulated fuel levels in two primary fuel tanks at indicated levels by transferring fuel from four auxiliary fuel tanks interconnected by lines and fuel pumps.

A laptop computer and joystick were used to administer the MATB. Audio for the communications task was provided by patching the computer audio output into the cockpit's internal communication system. The volume was adjusted to a comfortable subjective level for the left seat pilot after donning the flight helmet at the beginning of each simulator session.

A printout of the baseline 10-minute, medium difficulty-level, MATB script is included in appendix F. In order to prevent the MATB pilots from becoming conditioned to, or excessively bored with an identical MATB script administered eight times per test session, the events in the baseline MATB script were randomized. Eight versions of the baseline 10-minute MATB event script were used, each of the same duration and difficulty level and with the same number and types of tasks but in randomly different order (within type of task, i.e., time intervals between events were identical for all the script files). The order of the eight script files was also randomized for each simulator session.

Figure 4. MATB display.

The following table enumerates the raw performance data automatically obtained by the MATB along with the calculated parameters for which statistics were obtained and analyzed for differences across iteration and test condition.

<u>Table 3.</u>
MATB performance data.

TASK	DATA FILE	STATISTICS FOR
Monitoring two warning lights and four strip gages and responding to warning light changes or out-of-range strip gage readings.	Elapsed time to 0.01 sec Code indicating an event requiring a response e.g.: red light on, green light off, gauges 1-4 out of desired range Response time to 0.01 sec	Response time Number of events Number of timed out events Number of false responses (i.e., false alarms)
Joystick target tracking	Elapsed time to 0.01 sec Level of tracking difficulty low, medium, high) Sum of squares pixel tracking error to 0.01 pixel Tracking error sampling rate RMS tracking error to 0.01pixel	RMS tracking error
Communications	Elapsed time to 0.01 sec Event code (own vs. other, call sign, and channel to switch to) Change of frequency	Time to respond to msg Accuracy of channel and frequency changes Missed messages Responses to others' messages
Fuel (resource) management	Elapsed time to 0.01 sec Pump activity (pump #, on-off, failure, repair) Fuel in tanks A, B, C, and D	RMS deviation from target fuel levels in tanks A & B Number of user initiated pump activities

Task load ratings

The NASA Task Load Index (TLX) questionnaire (appendix I), developed by the Human Performance Research Group at the NASA Ames Research Center (Hart and Staveland, 1988), was administered every 30 minutes to the right seat pilot at the completion of each 10-minute set of standard maneuvers and to the left seat pilot immediately after completing each 10-minute MATB performance test.

The TLX questionnaire requires subjective ratings, on a 0 to 20 Likert-type scale, for mental demand, physical demand, temporal demand, performance, effort, and frustration level. Mental demand is a subjective estimate of the mental and perceptual effort that was required to perform a task (0=none, 20=overwhelming). Physical demand is the difficulty of the physical activity and exertion required by a task (0=none to 20=impossibly difficult). Temporal demand is the pace of task requirements or degree of time pressure (0=none to 20=overwhelming). Performance is a rating regarding the extent to which task objectives and criteria were achieved (0=perfect to

20=failure). Effort is a rating of how hard the individual worked to achieve the measured level of performance (0=none to 20=maximum). And, frustration level is a rating of how annoyed, irritated, or angry the individual became in attempting to achieve target performance during the task (0=none to 20=maximum).

Sequence of events in the study

All the aviator volunteers received a detailed briefing regarding the study and were informed of their right to withdraw from participation, at their discretion, without any penalties. Prior to participation, the volunteer aviators read and signed the informed consent and were medically cleared for any evidence of significant illness or excess risk. Female participants were negative on a serum pregnancy test obtained as part of the medical evaluation. The aviator volunteers participated in the study for 2 consecutive weeks. The first week was for uniform and helmet fitting, simulator and MATB training, and heat stress acclimatization in the environmental chamber. During the second week (test week), the aviators completed four test sessions, one session per day for 4 consecutive days (Monday - Thursday).

During the first week, ambient conditions in the environmental chamber for acclimatization were 100°F and 20 percent RH. The volunteer aviators ambulated on treadmills in an environmentally controlled chamber. The treadmill speed was set at 3 mph and 0 percent grade for two 30-minute intervals separated by a 10-minute rest break. After the acclimatization sessions in the environmental chamber, the pilots had 2-hour training flights in the UH-60 flight simulator with ambient conditions in the cabin increased daily from 90°F and 50 percent RH to 100°F and 50 percent RH. These simulator sessions provided some additional acclimatization as well as familiarization with the two different flight missions, the MATB computerized performance test, and the questionnaires (appendix I).

During their second week, the test subjects arrived each day at approximately 0700 hours, self inserted a rectal thermistor*, were assisted with the application of skin temperature sensors and electrocardiogram (ECG) leads*, and then donned the designated flight uniform (figure 5). The volunteers then entered the environmental chamber where they walked on treadmills at a 3 mph pace and 0 percent grade for 20 minutes. Per Thornton et al (1992), this method was used to approximate the metabolic heat load generated during an actual UH-60 preflight inspection. After completing the 20-minute simulated preflight inspection, the crew walked a short distance to the USAARL UH-60 simulator. Core temperature and heart rate were monitored every 10 minutes to ensure adherence to physiological limits as approved in the research protocol (core temperature limit of 102.56°F, or 39.2°C, and heart rate not to exceed 90 percent of age adjusted predicted maximum). Pre- and posttest weights

Test subject instrumentation & prep room -

Instrumentation: core temp, heart rate sensors

Don flight uniform

Pretest: nude and clothed weights POMS questionaire

Pretest canteen & all snack food weights

Initiate data recorders

Environmental chamber with 2 treadmills

Cool condition: 70°F, 20% RH

Hot condition: 100°F, 20%RH

Remove sensors

Posttest nude weight canteens & snack food weights Final checks Release for day

Simulated preflight:

don flight helmet

20 min walk on treadmill

3 mph, 0 grade

Pre-, & post preflight mood & symptoms questionaire Water ad libitum

Monitoring station

Cool condition: 70°F, 50%RH Hot condition: 100°F, 50%RH

UH-60 simulator

2 hrs: air assault scenario 10 min: simulated hot refuel break

2 hrs: MEDEVAC scenario

Post simulator cool-down room

Post session clothed weight Cooling: fans, iced towels Hydration: cooled water Venous sample for catecholamines Post session POMS questionaire

Disconnect from portable data recorders Assist test subjects into the cockpit Connect to physiological data aquisition system Technician initializes MATB for left seat pilot Sim operator initalizes HAWK flight performance system Every 30 mins: 10 min set of standard maneuvers at 2-2.5 k alt

10 min med difficulty MATB

questionaires: mood & symptoms task load index (TLX)

Every 10 mins: manual data recording: core temp & heart rate

cockpit environmental conditions

Figure 5. Heat stress study process.

and fluid intake and output were obtained to determine sweating rates and levels of dehydration.

Each simulator flight session during the test week consisted of two 2-hour sorties (AA and MEDEVAC, respectively) with an intervening 10-minute simulated hot refueling break. Every 30 minutes during the simulator session, the right seat pilot encountered IMC conditions and flew a 10-minute set of standard flight maneuvers. During the simulator flights, the data acquisition systems collected flight performance and physiological data. When subjective or objective indicators suggested that test subject tolerance limits were about to be reached, the volunteer pilots were instructed to make a simulated landing and both test pilots were assisted out of the simulator and escorted to a cooling and recovery room.

While the right seat pilot was flying the set of standard maneuvers, the left seat pilot was simultaneously using a stowable laptop computer and joystick to take the 10-minute, moderate difficulty-level, MATB performance test.

Results

In the tables and charts of results, reference to the unencumbered MOPP0 ABDU flight uniform is abbreviated as ABDU. Reference to the encumbered MOPP4 over ABDU ensemble is abbreviated as MOPP4. Likewise, the 70°F, 50 percent RH condition is abbreviated as the cool condition (although temperate might be technically more accurate) and the 100°F, 50 percent RH condition is abbreviated as the hot condition.

Repeated measures analysis of variance (ANOVA) was the primary hypothesis testing procedure utilized to determine whether means for performance variables and task load ratings were significantly different across the two levels of each of the two main factors (environmental temperature setting and type of flight uniform). For ease of interpretation, the ANOVA results tables typically list means for each variable across the test conditions and the resulting F and p statistics with degrees of freedom for effects and residual error. The customary $p \le 0.05$ criteria served as the decision threshold for rejecting null hypotheses that differences in means were due exclusively to chance or random variation in uncontrolled and unmeasured factors.

Means and p-values in the ANOVA results tables are utilized together to determine the magnitude and direction of differences in mean responses for variables across the different levels of the two factors. Significance for only the environmental temperature factor indicates that differences in mean performance values or workload ratings were only associated with differences in environmental temperature, but not the different flight uniforms. Similarly, significance for a variable for only the uniform factor indicates

that differences in mean responses were only associated with type of uniform, but not with the different temperature conditions. Significance for interaction between temperature and uniform indicates that the slope of the response with respect to temperature differed for the two levels of uniform, or vice versa.

Test subjects

Twelve male and two female aviators between the ages of 27 and 50 (mean 35.6 years of age) completed participation in this study. No volunteer had an exclusionary medical condition. Each of the 14 completed at least 1 complete week of actual testing. Three test subjects volunteered for an additional test week. Therefore, there were 14 distinct test subjects but 17 test subject numbers.

Ten (71.4 percent) of the aviators were UH-60 rated; the remainder were rated in various other helicopters. Average total career flight time was 1453 (320-2800) hours with an average of 452 (0-1800) total hours flying UH-60s and an average of 69 (0-300) total hours in UH-60 simulators. There were 3 officers and 11 warrant officers. Four (28.6 percent) volunteers were from the Army National Guard, the remainder (77.4 percent) were from various active duty Army aviation units. Four of the volunteer pilots had previously participated in other USAARL studies.

Average height and weight for the volunteer aviators was 70 inches and 170 pounds, respectively. Performance results for their most recent Army physical fitness training (APFT) test included an average score of 261 (209-300), with an average of 55 pushups, 63 situps, and 17:52 for the 2-mile run. The average self-rated effort for their most recent APFT test was 92 percent of perceived maximum possible effort. These data indicated that the test subjects, as a group, were in good physical condition.

Average number of hours of CB training over the preceding 1 and 5 years were 0.64 (0-3) hour and 8 (0-52) hours, respectively. They also had an average of 1.28 (0-6) hours of heat illness prevention training over the preceding 2 years. For further demographic details, see appendix B.

Environmental conditions

Repeated measures ANOVA was performed on mean cockpit temperatures and humidity to determine how closely actual cockpit environmental conditions during the test sessions were to those specified in the study design. Results showed that there were no statistically significant differences between actual and specified values for either of the temperature and humidity settings (70°F, 50 percent RH and 100°F, 50 percent RH) across the two different flight uniforms (ABDU and air warrior). These results verified excellent control of the environmental conditions during the study (see

Reardon et al, 1996 for further detail). Cockpit WBGT for the cool condition was 70°F (21.1°C) and for the hot condition, 90°F (32.2°C).

Endurance

All the volunteer pilots were able to complete the full 4-hour two-sortie mission (nominally 300 minutes in duration) for each of the test conditions except the encumbered MOPP4-hot condition. None of the aviators or crew were able to complete even the first 2-hour sortie in the MOPP4-hot condition. Overall, crew endurance was reduced (p<<0.05) by 65 percent, from an average of 309 minutes for the cool and ABDU conditions, to only 107 minutes (figure 6) for the encumbered MOPP4-hot condition. The reasons for this were the much greater physiological and psychological heat strain caused by the encumbered MOPP4-hot condition (see detailed physiological results in Reardon, et al., 1996). For seven of the nine crews, duration in the MOPP4-hot condition was limited by at least one of the pilots reaching the safety limit for core temperature (39.2°C or 102.56°F). Even so, the crews on exiting the simulator typically manifested signs of mild to moderate heat exhaustion. A few also had several minutes of orthostatic lightheadedness. (All recovered uneventfully to their pretest baseline conditions after 30-60 minutes of rest, fluids, and cooling with a fan and iced towels).

There were no significant correlations between endurance in the MOPP4-hot condition and aviator characteristics. Cross correlations between endurance and age (0.1339), height (-0.2124), weight (-0.2530), recent APFT score (0.3875), career flight hours (-0.3594), career UH-60 hours (0.2163), career simulator hours (0.3969), and amount of recent heat stress training (-0.3330) were relatively small and not statistically different from zero.

Flight performance results

The charts and repeated measures ANOVA tables in appendix C summarize flight performance results. The right seat pilots alternated use of the AFCS for each iteration of the set of standard maneuvers (SL, RSRT, SL, LCT, SL, LDT, SL) as specified in the flight scripts. Hovers, hover turns, and NOE and contour segments, however, were always flown with the AFCS on.

Flight performance scores, indicating how well the pilots maintained target values for each parameter during each maneuver, as specified in the flight profile scripts (appendix A), were calculated in two steps. First, mean scores for each of the relevant parameters associated with each maneuver were automatically calculated using the scoring bands in table 4. Second, the scores from each of the graded parameters were averaged into a single composite score for each maneuver.

Figure 6.
Aviator Endurance.

(Time in uniform-in minutes)

From beginning of treadmill session to end of simulator flight

TS NUMBER	ABDU+70F	ABDU+100F	MOPP4+70F	MOPP4+100F
1	319.00	307.00	314.00	120.00
Section 2	- : 319.00	307.00	314.00	120:00 -
3	310.00	305.00	322.00	98.00
+4	310.00	305.00	322.00	98.00
5	347.00	319.00	302.00	140.00
6	338.00	- 333.00	323.00	92.00
7	338.00	333.00	323.00	92.00
8	292.00	299.00	288.00	92:00
9	292.00	299.00	288.00	92.00
w 10	301.00	301.00	330.00	91.00
11	301.00	301.00	330.00	40.00
12	296.00	292.00	302.00	97.00
13	296.00	292.00	302.00	148.00
14	289.00	296.00	302.00	99:00
15	289.00	296.00	302.00	99.00
16	308.00	310.00	322.00	152.00
17	308.00	310.00	322.00	152.00
AVERAGE#	309.00	306.18	312.24	107.18
	8.72	5.94	6.59	13.93
· J. Max	##347.00.	≗	330.00	152.00
Min	289.00	292.00	288.00	40.00

<u>Table 4.</u>
Scoring bands for flight performance deviations from target values.

Maxi	mum devi	ations fro	om pertor	mance sta	ındards for	r scores of
Measure (units) \ Score	100	80	60	40	20	00
Heading (degrees)	<0.5	1.0	2.0	4.0	8.0	> 16.0
Altitude (feet)	<4.4	8.8	17.5	35.0	70.0	>140.0
Airspeed (knots)	<0.65	1.3	2.5	5.0	10.0	> 20.0
Slip (ball widths)	<0.025	0.0	0.1	0.2	0.4	> 0.8
Roll (degrees)	<0.4	8.0	1.5	3.0	6.0	> 12.0
Vert. Speed (feet/m)	<5.0	10.0	20.0	40.0	80.0	>160.0
Turn Rate (degrees/s)	<0.15	0.3	0.5	1.0	2.0	> 4.0

Table 5 provides reference values utilized in scoring flight performance for the specific data channels selected for each type of maneuver. *Best* are the target values associated with 100 percent performance score. *High* are deviations from the target values beyond which subjects would receive a score of zero. *Wgt* are weightings for a weighted average composite score (ACS). *ATM* are the maximum deviations from the target values permitted by aircrew training manual standards (Department of the Army, 1996).

<u>Table 5.</u>
Flight performance standards by data channel and maneuver.

LEFT CLIMBING TURN	5. Data Channels					
Data Channel Description	## Channel	Abrev.	<u>Best</u>	<u>High</u>	Wgt	ATM
Climb rate (ft/min)	01 FROC	Cli	500	160	1	100
Turn rate (deg/sec)	02 FDPSID	Tm	-3	4	1	
Pilot indicated airspeed (knots)	03 FIASR	Asp	120	20	1	10
Roll angle (degrees)	04 FPHID	Rol	-19	12	1	10
Slip ball position (n-d)	05 FSLIPP	Slp	0	8.0	1	
STRAIGHT & LEVEL	5. Data channels					
Data Channel Description	## Channel	Abrev.	Best	High	Wgt	<u>ATM</u>
Heading (degrees)	01 UDISHG	Hdg	150	16	1	10
Indicated altitude (feet)	02 FALTI	Alt	2000	140	1	100
Pilot indicated airspeed (knots)	03 FIASR	Asp	120	20	1	10
Roll angle (degrees)	04 FPHID	Rol	0	12	1	10
Slip ball position (n-d)	05 FSLIPP	SIp	0	8.0	1	1
LEFT DESCENDING TURN	5, Data Channels					
Data Channel Description	## Channel	Abrev.	<u>Best</u>	<u>High</u>	<u>Wgt</u>	<u>ATM</u>
Climb rate (ft/min)	01 FROC	Cli	-500	160	1	100
Turn rate (deg/sec)	02 FDPSID	Tm	-3	4	1	
Pilot indicated airspeed (knots)	03 FIASR	Asp	120	20	1	10
Roff angle (degrees)	04 FPHID	Rol	-19	12	1	10
Slip ball position (n-d)	05 FSLIPP	Slp	0	8.0	1	1

Table 5. (continued)

HOVER		2, Data Channels					
	Data Channel Description	## Channel	Abrev.	<u>Best</u>	High	Wat	<u>ATM</u>
	Radar altitude (feet)	01 URDALT	Alt	40	16	1	3
	Heading (degrees)	02 UDISHG	Hdg	20	8	1	10
HOVER TURN		1, Data Channels					
	Data Channel Description	## Channel	Abrev.	<u>Best</u>	<u>High</u>	<u>Wgt</u>	<u>ATM</u>
	Radar altitude (feet)	01 URDALT	Alt	40	16	1	3
RIGHT STANDAR	O RATE TURN	5, Data Channels					
***************************************	Data Channel Description	##_Channel	Abrev.	Post	l limb	18/4	A T. 4
	Turn rate (deg/sec)	01 FDPSID	Trn	<u>Best</u>	High 4	<u>Wgt</u>	<u>ATM</u>
	Indicated altitude (feet)	01 FDFSID 02 FALTI		3	4	1	400
	1 3		Alt	2000	140	1	100
	Pilot indicated airspeed (knots)	03 FIASR	Asp	120	20	1	10
	Roll angle (degrees)	04 FPHID	Rol	20	12	1	10
	Slip ball position (n-d)	05 FSLIPP	Slp	0	8.0	1	1
CONTOUR		4, Data Channels					
	Data Channel Description	## Channel	Abrev.	<u>Best</u>	<u>High</u>	Wat	<u>ATM</u>
	Radar altitude (feet)	01 URDALT	Rai	80	80	1	100
	Heading Error (degrees, COMPUTED)	02 *V07	HdE	0	10	1	10
	Roll angle (degrees)	03 FPHID	Roi	0	12	1	10
	Slip ball position (n-d)	04 FSLIPP	Slp	0	8.0	1	1
NAP OF THE EAR	RTH	4. Data Channels					
	Data Channel Description	## Channel	Abrev.	Post	High	Mat	A TRA
	Radar altitude (feet)	01 URDALT	Ral	<u>Best</u> 25	<u>High</u> 25	Wgt 1	<u>ATM</u>
	Heading Error (degrees, COMPUTED)	02 *V07	HdE	-		1	100
	Roll angle (degrees)	03 FPHID		0	10	1	10
	Slip ball position (n-d)		Rol	0	12	1	10
	onp ban position (n-d)	04 FSLIPP	Slp	0	8.0	1	1

Average composite scores

Average composite flight performance scores at each sampling point during an iteration of a particular type of maneuver were calculated as an unweighted average of the individual scores for the maneuver-specific flight performance data channels. These sample-point ACSs were then averaged across each iteration. Lastly, the iteration ACSs were averaged to obtain an average ACS for each pilot by type of maneuver and test condition.

There were insufficient degrees of freedom to perform a multiple analysis of variance (MANOVA) to evaluate the overall effects of the main factors, temperature and type of uniform on the ACSs for all the maneuvers taken together. Alternatively, a three-way (temperature, uniform, and type of maneuver) repeated measures ANOVA was performed on the average composite flight performance scores (table 6). These results

indicated a significant first-order interaction of cockpit temperature and type of flight uniform on flight performance, as well as a significant main effect for type of uniform.

<u>Table 6.</u>
Three-way repeated measures ANOVA for flight performance: ACS scores.

	df	MS	df	MS		
	Effect	Effect	Error	Error	F	p-level
Temperature	1	46.14	6	14.53	3.18	0.13
Uniform	1	336.40	6	35.27	9.54	0.02
Maneuver	7	5235.68	42	33.57	155.96	0.00
Temperature and Uniform	1	231.88	6	19.84	11.69	0.01
Temperature and Maneuver	7	19.44	42	18.37	1.06	0.41
Uniform and Maneuver	7	18.75	42	21.11	0.89	0.52
Temperature, Uniform, and Maneuver	7	8.49	42	19.70	0.43	0.88

Repeated measures ANOVA (table 7a,b) was also used to determine the specific flight parameters for each type of maneuver exhibiting significant main factor and interaction effects. Analysis was performed separately for data from the maneuvers where the AFCS was on, off, and both on and off. The last was justified on the basis that during actual UH-60 flight, pilots frequently switch the AFCS off for short periods to either align the aircraft for a new AFCS flight track, or for the benefits of close manual control during demanding flight conditions.

When flight performance was averaged across AFCS on and off for all iterations of each maneuver, the encumbered MOPP4 uniform was associated with significantly reduced ACS for five (HOV, HOVT, RSRT, SL, and contour) of eight (62.5 percent) maneuvers (table 8). In addition to the effects on the composite scores, 5 of the 29 (17.2 percent) separately scored flight parameters for the 8 maneuvers were significantly reduced (table 11). For the averaged AFCS on and off results, the hot temperature condition by itself, as a main effect, reduced the ACS for only one (RSRT) of eight maneuvers (table 7a,b).

For the iterations of the maneuvers flown with AFCS on, the MOPP4 ensemble was associated with significantly lower ACS for three (HOV, HOVT, and contour) of the eight (37.5 percent) types of maneuvers compared to the ABDU conditions (table 7a,b). The Air Warrior ensemble did not significantly reduce performance scores for the standard maneuvers when flown with trim on. In addition to the effects on the composite scores, 5 of the 29 (17.2 percent) separately scored flight parameter scores for the 8 maneuvers were significantly reduced. For the averaged AFCS on results, the

<u>Table 7a.</u>
Repeated measures ANOVA results for flight performance scores.

		MEA	MEAN SIMULATOR FLIGH	GHT PERFORMANCE SCORES BY MANEUVER	SCORES BY MANE	euver	TEUPE	MAIN EFFECTS		1004	INTER	INTERACTION
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	FVAIUE	PVALLE	E VA! IE	UNIFORM	TEMPERATU	TEMPERATURE X UNIFORM
, 101										L ANEOE	LANGE	T VALUE
202	ACS	6	78.43	74.81	79.05	72.65	0.21	0.6587	10.51	4) (4) (4)	0.86	0.3797
	DADAG ALT	5	69.56	66.38	71.48	69.91	1.85		1.21	0.3029	0.22	0.6481
	I CARONA ME I	9	87.33	63.29	86.52	75.43	6.59	0,0383	16.93	0.0034	2.67	0.1409
ноут	ACS	6	43.44	41.00	43.83	40.19	50.0	0 8280	95 9	4 9 9 9 9		
	RADAR ALT	8	86.33	81.35	87.10	200	600	0.0233	6.65		0.59	0.4662
	TURN RATE	6	0.48	0.48	0.49	0.44	000	1,000	0.00	3400 COSE	4 8	0.5243
						100	00'0	0000	0.03	0.8602	90:0	0.5176
RSRT	ACS	6	71.36	70.91	72.42	65.27	14,86	0.0062	15.86	8.00.65	871	
	INDICATED ALT	8	68.97	66.20	67.30	57.46	2.94	0.1303	9.60		2.29	0.1738
	AIR SPEED	6	83.27	62.33	84.67	79.43	0.0	0.4003	19.87	6002	3.59	9,100
	ROLL ANGLE	6	79.02	79.19	77.25	72.38	7.79	69200	3.20		1,43	0.2708
	TURN RATE	6	87.05	85.94	66.95	81.41	4.76	0.0655	11.95	\$9100	3.86	0.0903
LCT	ACS	æ	60.69	60.50	27.73	***						
	AIR SPEED	0	71.30	20.00	71.00	40.00	86.1	0.2488	3.61	0.0993	3.17	0.1183
	SUP	G	15.25	14.75	46.69	99.72	0.68	0.3765	1.38	0.2779	12.98	9887
	CLIMB RATE	6	23.59	24.28	24.88	10.00	20.7	0.2422	0.08	0.7793	91.0	0.7149
	TURN RATE	6	76.59	76.59	76.59	73.83	0.87	0.4395	20.00	0.1430	6	90/00
								1601.0	20.7	0.1343	0.66	0.3783
SL	ACS	6	70.67	68.77	72.14	90'99	0.70	0.4312	9.56	92100	6.28	TOPOG
	HEADING	6	85.72	83.52	65.39	78.47	4.23	0.0787	6.30	0.0000	256	0.1635
	INDICATED ALT	6	62.75	58.70	65.25	54.85	90'0	0.8156	2.50	0.1575	0.67	0.4415
	AIK SPEED	6	81.00	79.91	61.83	74.75	3.47	0.1048	22.28	0.0022	1.83	0.2179
	RULL	a	78.67	80.11	79.78	73.82	2.38	0.1670	2.66	0.1466	22.07	0,0022
	SLIP	6	45.28	41.91	48.50	43.27	0.82	0.3943	1.35	0.2839	0.08	0.7816
LDT	ACS	6	53.70	53.36	92 75	01.03	200	70000				
	AIR SPEED	6	78.72	75.22	78.41	72.59	1.82	0.2190	2.14	0.1000	40.0	0.2170
	SLIP	6	27.27	28.98	29.70	28.73	0.34	0.5805	0.05	0.8322	920	0.4567
	CLIMB RATE	o.	56.09	24.86	25.23	20.07	3.17	0.1162	2.32	0.1714	1.42	0.2727
	IUKNKAIE	6	74.00	74.66	75.84	70.80	0.63	0.4519	1.04	0.3415	5.06	0.0593
NOE	ACS	6	46.18	75 67	76 27	2017	67.0	3072.0				
	HEADING	G	55.37	54.89	57.90	25.75	0.48	2,500.0	200	0.200	202	200
	RADAR ALT	6	26.94	25.33	27.75	15.01	4.57	0.00	200	2000	1.40	0.2705
	ROLL	G.	64.34	65.88	64.14	96.99	0.11	0.7472	2.10	0.1853	0.10	0.7584
	SUP	9	38.40	37.75	39.01	40.33	0.32	0.5849	0.03	0.8774	0.25	0.6277
CONTOUR	Acs	0	67.00	07.03								
	HEADING	on on	63.38	20.48	23.04	24.38	60.03	0.7728	11.43	94000	4.52	0.0661
	RADAR ALT	6	80.58	1907	A2 C8	20.48	50.0	0.8493	7.43	0.0260	2.04	0.1906
	ROLL	8	76.78	75.93	77.46	74.68	0.12	0.4316	4.73	0.0614	3.42	0.1018
	SLIP	6	40.54	39.15	42.72	39.44	0.23	0.6425	2.26	0.1712	0.02	0.3928
											27.0	11170

<u>Table 7b.</u>
Repeated measures ANOVA results for flight performance scores.

			PERFORMANCE	MEAN SIMULATOR FLIGHT PERFORMANCE SCORES BY MANEUVER	UVER			MAIN EFFECTS			INTERA	MOLLO
1	PARAMETER	NOM TSs	ABOU, 70*F		ABDU, 100°F	MOPP4, 100°F	F VALUE	P VALUE			FVALUE	P VALUE
1												
	AC3	6	19790	92.99	96.79	59'65	10,11	991474	4.72	0.0791	3.67	9690'0
1	TURN RATE		22.53	50.75	8 2	50.56	5 4 5	1980	3.37	0.1081	1.81	0.2208
1 1 1 1 1 1 1 1 1 1	AIR SPEED	•	70.61	77.56	79.86	71.75	4.26	0.0780	11.45	1110	5.43	0.0526
1	ROLL AWGLE	6	70.02	71.78	67.63	67.86	3.85	0.0854	0.10	0.7632	0.01	0.9057
1 1 1 1 1 1 1 1 1 1	YCS	6	85 55	W17	A5.39	40.25	62.63	D DAME	£ 5	00000	2.26	18710
1 1 1 1 1 1 1 1 1 1	AR SPEED		70.63	89.03	88.88	18.08	2.34	0.1700	2.18	0.1848	8	0.7056
	SUP		90.0	6.19	8.13	7.66	1.04	0,3413	0.0	0.6727	100	0.9130
1	TURN RATE		18.50	15.94	18.44	11.75	8.3	2000	13.0	0.2707	423	0.0767
1											21.5	0000
1 1 1 1 1 1 1 1 1 1	ACS.		85.25	17.10	\$2.99	997.69	0.23	0.6471	12.77	0,0000	1.45	0.2672
1 1 1 1 1 1 1 1 1 1	HEADING		2 3	59:09	3	75.75	2.82	0.1296	19.70	26430	8	0.2049
1 1 1 1 1 1 1 1 1 1	AIR APPEN	•	22.70	30.16	90.00	25.26	\$ 5	0.2665	2.68	0.1656	88	0.9472
1 10 10 10 10 10 10 10	ROLL	•	71,86	72.75	71.78	62.63	2 4	0.0817	378	0.0828	90.7	0.6045
Column C	SLP	•	33.78	28.03	37.28	25.69	0.01	0.9252	3.80	0.0688	98'0	0.4428
1 1 1 1 1 1 1 1 1 1	904											
1 1 1 1 1 1 1 1 1 1	AIR SPEED		74.13	2 22	25.17	20.44	3.46	0.1002	15.08		2.31	0.1727
1 1 1 1 1 1 1 1 1 1	TURH RATE	•	70.50	95 89	70.72	61.25	3.00	0.1271	363	0.0063	203	0.1969
No. 11 12 12 12 12 12 12 12	CLIMB RATE	٥	19.63	16.66	19.84	10.81	25.11	501	17.75		2.32	0.1718
Number Product Production Number	dis		10.13	13.34	12.91	12.68	0.38	0.5682	0.21	0.6541	0.86	0.3858
Main Table Mai				REPEATED MEA	BURES ANOVA RE	BULTS FOR FLIGHT	PERFORMANCE 8	CORES - TRIM ON				
No. 17.10 No.	ME	EAN SIMULATOR FLIGH	IT PERFORMANCE	SCORES BY MANE	EUVER			MAINEF			INTER	КСТОН
Mart							TEMPE	FRATURE	- 6	FORM	TEMPERATUR	LE X UNIFORM
0 10.44 10.44 10.04 10.45 10.45 10.45 10.45 10.45 10.45 10.45 0.04	AAMEUVER PARAMETER	NUM TS:	ABOU, 70%	MOPP4, 70°F	ABDU, 100%	MOPP4, 100°F	FVALUE	PVALUE	FVALUE	PVALUE	FVALUE	P VALUE
0 60.54 60.	ACS	•	\$9.43	74.81	20.67	72.85	12.0	0.6587	10.51		0.86	0.3787
9 52,44 11,24 62,54 12,24 12,	HEADING	•	35 36	86.38	71.48	18.81	28.	0.2112	1.21	0.3028	22.0	1979'0
9 6.544 61.00 6.450 6.040 6.05 0.0289 6.61 0.044 0.05 9 6.54 6.45 6.45 6.45 6.44 0.44 0.04 0.04 0.05 0.05 0.04 0.04 9 0.44 0.44 0.44 0.44 0.44 0.44 0.04 0.04 0.00 0.00 0.04 <td>The state of</td> <td>•</td> <td>CT-10</td> <td>87:00</td> <td>90.36</td> <td>13.45</td> <td>R</td> <td>***************************************</td> <td>24.0</td> <td>0.00 W. V. V.</td> <td>7.07</td> <td>0.1409</td>	The state of	•	CT-10	87:00	90.36	13.45	R	***************************************	24.0	0.00 W. V.	7.07	0.1409
9 6833 6150 6044 0.00 10881 656 6,6444 0.04 9 6834 6150 6044 0.00 1000 0.00 </td <td>ACS</td> <td>6</td> <td>17'57</td> <td>41.00</td> <td>43.63</td> <td>40.19</td> <td>90:0</td> <td>0.8289</td> <td>6.15</td> <td>HEOT</td> <td>0.59</td> <td>0.4662</td>	ACS	6	17'57	41.00	43.63	40.19	90:0	0.8289	6.15	HEOT	0.59	0.4662
9 1588 1500 1500 1500 0.016 0.0216 0.0216 0.021	TURN RATE		25.50	61.35	67.10	20.04	8 8	4 0000	888	37 C	4.0	0.5243
9 71540 715			2		22.5	100		2000	800	20007	855	0.0170
9 66774 1158 68578 6823 0.25 0.00101 0.00 0.0186 0.01 9 66772 11.64 0.00 <th< td=""><td>SOV</td><td>0</td><td>75.91</td><td>75.06</td><td>16.06</td><td>70.81</td><td>8.00</td><td>0.2163</td><td>3.63</td><td>0.0912</td><td>2.69</td><td>0.1450</td></th<>	SOV	0	75.91	75.06	16.06	70.81	8.00	0.2163	3.63	0.0912	2.69	0.1450
9 6627 57.00 66.70 7.00 0.70 <th< td=""><td>INDICATED ALT</td><td></td><td>71,41</td><td>2.58</td><td>82.78</td><td>68.38</td><td>0.28</td><td>0.6120</td><td>0.00</td><td>0.8768</td><td>₩0.0</td><td>92960</td></th<>	INDICATED ALT		71,41	2.58	82.78	68.38	0.28	0.6120	0.00	0.8768	₩0.0	92960
0 55.50 56.75 56.75 56.75 56.75 56.75 17.01 17.02 17.	AK SPEED		22.50	80.75	2 2	22.5	0.18	0,7001	0.26	0.6261	0.24	0.6373
6 55.53 56.54 56.	TURN RATE	•	89 O8	88.25	89.72	27.00	1.3	0.2866	5.21	0.0565	9	0.2748
0 13.87 77.47 77.54 77.54 77.54 77.54 77.54 77.54 77.	400	۰	2		2005		ä					
8 23.89 30.55 31.31 27.00 OGA OGATI 0.01 COSSI 23.1 9 16.44 26.24 26.26 73.25 73.25 73.25 73.25 25.26 25.26 25.27	AR SPEED	•	75.97	77.47	78.53	27.63	97.0	0.4117	21.0	0.8928	0.00	0.4546
9 0.00 1 6147 6200 78.25 0.044 0.654 0.656 0.469 0.649 0.641 0.659 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.649 0.641 0.658 0.641 0.658 0.641 0.658 0.641 0.658 0.641 0.658 0.641 0.658 0.658 0.641 0.658 0.641 0.658 0.658 0.658 0.641 0.658 0.65	CLIMB RATE		28.69	30.75	31.31	27.00	90.0	0.8471	0.18	0.6961	231	0.1723
9 7444 7253 7260 7354 989 0.200 244 5555 389 388 9 7755 7815 7815 715 0.61 0.5159 2.66 0.617 2.00 9 7755 7844 6175 10.94 0.617 0.5199 2.66 0.617 2.00 9 6677 6174 6674 6175 10.94 0.617 0.594 0.617 0.694 0.617 0.694 0.617 0.694 <td>TURN RATE</td> <td>•</td> <td>16.08</td> <td>61.47</td> <td>92.00</td> <td>79.25</td> <td>800</td> <td>0.8474</td> <td>0.55</td> <td>0.4906</td> <td>0.48</td> <td>0.5089</td>	TURN RATE	•	16.08	61.47	92.00	79.25	8 00	0.8474	0.55	0.4906	0.48	0.5089
0 74376 74375 74376 74376 74376 74376 74376 74377 743	SLP	9	24.44	23.25	25.03	23.84	9.90	0.3290	2.94	3.5355	3.69	8,0048
9 \$159 \$654 \$617 \$170 \$1	YCS	۰	76.95	78 13	78.03	37 17	0.47	93.30	Š	4474	200	0.4013
10	HEADING	•	87.06	98.41	NS:84	81.25	1731	9900	98'0	0.3841	750	0.4871
0 6000 83.34 78.44 77.81 0.5533 46.91 68.92 89.34 0 66.47 67.72 67.73 67.53 46.91 68.92 3.98 0 66.47 57.73 67.73 67.73 67.73 68.73 3.98 0 66.47 57.73 68.73 67.73 68.73 60.93 60.93 60.93 60.93 0 77.50 67.73 67.73 67.73 67.73 60.93	INDICATED ALT		82.89	67.25	70.50	56.75	16.0	0.3708	2.06	0.1940	90,	0.3315
6 65.47 \$1787 \$178.2 \$13.53 \$1.59 \$	AR SPEED	•	90'98	63.34	96.56	78.44	72.81	0.5333	16.91	4.6078	169.34	0.6543
9 56778 56778 56774 172 0.5422 0.00 0.5119 0.00 9 60.54 61.75 66.15 60.16 0.01 0.00 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	ROLL	•	85.47	67.97	97.56	83.25	0.37	0.5627	0.30	0.6028	3.56	0.1002
0 60.54 61.78 61.89 60.18 0.01 0.0113 0.00 0.0571 0.03 8 75.29 87.72 81.53 84.13 0.05 0.0270 1.00 0.0311 0.00 9 75.29 80.73 78.50 25.00 20.21 0.0527 0.05 9 75.59 20.24 30.05 78.00 0.04 0.0316 0.02 0.0527 0.05 9 44.41 46.53 30.52 23.00 0.04 0.0317 0.02 0.059 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	SLP	6	56.78	55.76	59.72	28.44	1.02	0.3452	90:0	0.8119	0.00	0.9752
9 6331 8723 6135 6431 0.05 0.6870 1.00 0.0311 0.00 9 7259 6218 0.03 0.0431 0.02 0.0517 0.06 9 7259 2224 0.03 720 0.0437 0.05 0.0431 0.02 0.06 9 44.41 44.53 44.13 0.03 0.044 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044	ACS	8	96.56	61.78	61.66	60.09	100	0.0113	8	0.8571	92.0	0.5513
p 77250 00.73 00.03 0.043 0.043 0.0316 0.02 0.0527 0.0567 0.056 p 4.4.1 4.615 4.050 4.113 6.049 0.0316 0.02 0.05827 0.056 p 4.4.1 4.615 4.620 4.113 6.049 0.017 0.02 0.0569 0.134 0.13 0.134	AIR SPEED	•	63.31	82.72	52.78	5.88	90'0	0.8270	8	0.3511	090	0.4629
P 3259 3254 3053 2304 0.00 0.001 0.001 0.000 0.010 0.000 0.10	TURN RATE		77.50	80.75	26.08	79.50	0.43	0.5316	0.20	0.6627	80	0.4480
1	CLIMB RATE	a	32.58	32.84	30.63	29:06	0.80	0.4017	0.03	0.8586	0.18	0.6874
9 46.18 45.97 47.34 44.77 0.12 0.7255 1.49 0.2586 3.07 1.50 9 25.37 54.18 57.19 54.27 0.64 0.607 0.000 0.000 0.14 9 25.34 57.13 27.13 0.64 0.11 0.000 0.000 0.644 0.14 9 55.44 27.13 0.13 0.13 0.13 0.13 0.10 0.11 0.00 <	SLP		44.41	4.63	48.50	43.13	80.09	. 0.0007	57.89	0.3442	47.54	0.5433
9 55.37 54.49 77.90 94.62 0.64 0.5071 0.000 0.700 1.40 9 20.34 25.33 27.75 15.01 4.57 0.0051 2.60 0.0163 0.104 9 66.34 66.34 66.44 66.34 66.44 <	YC3		46.18	45.97	47.24	44.27	0.12	0.7425	1.49	0.2565	3.02	97130
0 2344 2533 27/5 1501 437 0.00651 5.40 6.6487 10.45 0 0.4134 2533 27/5 2.00 0.1853 0.10 0 0.4134 27/5 39.01 40.33 0.03 0.10 0.117 0 0.4134 27/5 39.01 40.33 0.0067 0.177 0.140 0.0044 1.52 0 0.4134 27/5 24/5 24/5 0.0067 0.177 0.177 0.0044 1.52 0 0.4134 27/5 27/6 0.0067 0.177 0.0044 1.52 0 0.4134 27/5 27/6 0.0067 0.177 0.0044 0.12 0 0.4134 27/5 27/6 0.0044 0.12 0.0044 0.12 0 0.4134 27/5 27/6 0.12 0.0044 0.12 0 0.4134 27/5 27/6 0.12 0.0044 0.12 0 0.4134 27/5 27/6 0.12 0.0044 0.02 0 0.4134 27/5 27/6 0.0044 0.02 0 0.4134 27/5 27/6 0.0044 0.02 0 0.4134 27/5 27/6 0.0044 0.02 0 0.4134 27/5 27/6 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02 0.0044 0.02 0.0044 0.02 0 0.4174 0.02 0.0044 0.02	HEADING	۰	56.37	28	57.80	54.52	0.48	0.5071	08:0	0.3708	1.40	0.2705
1	RADAR ALT	a	13.00 10.00 10.00	33.33	27,75	15.01	4.57	0.0651	5.40	0.0487	10.45	a o
9 57.00 58.40 58.54 54.35 0.0487 0.7778 11.43 0.0044 45.2 9 64.03 61.04 65.17 55.40 0.087 7.51 7.51 0.0044 45.2 9 50.30 48.53 52.40 65.00 0.09 0.4310 47.3 0.0044 3.7 9 70.31 70.32 70.31 6.70 0.004 3.4 9 70.31 70.32 70.37 0.004 3.4 9 70.31 70.32 70.37 0.004 0.02 9 70.31 70.32 70.37 0.004 0.02 9 70.32 70.32 70.37 0.004 0.00 9 70.32 70.32 70.37 0.00 0.00 9 70.32 70.32 70.37 0.00 0.00 9 70.32 70.32 70.32 0.00 0.00 9 70.32 70.32	SUP	•	7 5	27.75	2601	8 8	= 5	0.7472	2.10	0.1853	0.10	0.7564
9 97,00 95.40 95.41 54.30 0.0827 0.775 114.4 6,6698 4.82 9 61.00 61.00 65.17 55.40 0.17 0.17 0.4748 1.37 9 75.31 75.00 75.31 75.40 0.0014 3.42 9 75.31 75.00 75.31 75.00 75.31 75.00 9 75.31 75.00 75.31 75.31 75.00 75.31 9 75.31 75.00 75.31 75.31 75.31 75.32 9 75.31 75.32 75.31 75.32 75.31 75.32 10 75.32 75.31 75.32 75.31 75.32 75.31 10 75.32 75.32 75.32 75.32 75.33 75.32 10 75.32 75.32 75.32 75.32 75.32 75.32 10 75.32 75.32 75.32 75.32 75.32 75.32											27.0	1700
0 64.03 61.04 65.17 58.49 0.12 0.75 7.51 66.85 1.37 0 0.05.90 49.53 5.06.10 0.00.10 4.75 0.00.11 3.42 0 78.13 78.00 0.00.10 0.01.10 0.00.11 3.42 0 78.10 78.00 0.01.20 0.01.20 0.01.20 0.00.11 0.02.20 0 78.10 78.10 78.10 0.01.20 <td< td=""><td>VG</td><td>*</td><td>97.80</td><td>56.49</td><td>59.54</td><td>86.PG</td><td>0.0697</td><td>0.7728</td><td>11,43</td><td>9400'0</td><td>4.52</td><td>0.0661</td></td<>	VG	*	97.80	56.49	59.54	86.PG	0.0697	0.7728	11,43	9400'0	4.52	0.0661
9 18.05 15.05 17.46 0.12 0.09 0.4318 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	HEADING	•	20.2	A0.19	25.7	56.48	0.12	0.7356	7.51	90000	137	0.2762
6 4034 39.15 42.77 39.44 0.23 0.6425 2.78 0.1772 0.23	ROLL		76.78	25.5	00.20	87.00	3	0.4518	4.73	1000	3.42	0.1016
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d d									The course of th		-

hot temperature condition, as a main effect, did not reduce the ACS for any of the eight flight maneuvers (table 7a,b).

With AFCS off, the encumbered MOPP4 uniform significantly degraded the ACS for two (SL and LDT) (50 percent) of the four types of maneuvers in the set of standard maneuvers (table 8). In addition to the effects on the composite scores, 5 of the 17 (29.4 percent) separately scored flight parameters for the 4 maneuvers were significantly reduced (table 7a,b). For the averaged AFCS off results, the hot temperature condition, as a main effect, reduced the ACS for two (RSRT and LCT) of the four flight maneuvers that were alternately flown with AFCS off.

<u>Table 8.</u>
Effects of encumbered MOPP4 ensemble in hot conditions on average composite flight scores.

Maneuver	AFCS (trim) on & off	AFCS on	AFCS off
HOV	1	ı	n/a
HOVT	1	Ţ	n/a
RSRT	l	↔	+
LDT	+ +	+	1
SL	1	+	1
LCT	↔	+	++
Contour	1	1	n/a
NOE	++	↔	n/a

^{* ↓ -} indicates a significant decrease in average composite scores.

Root mean squared errors (RMSEs)

RMSEs were calculated as the square-root of the mean-squared deviations of the actual flight performance data from the corresponding target values for each data channel across all the sample points in an iteration of a maneuver. The RMSEs were then averaged across iterations to obtain an average RMSE for each type of maneuver and test condition.

^{→ -} indicates no significant increase or decrease.

<u>Table 9a.</u>
Repeated measures ANOVA results for flight performance RMSE.

			REPEATED	D MEASURES ANOVA RESULTS FOR FLIGHT PERFORMANCE RMSE - TRIM ON and OFF	IOVA RESULTS	S FOR FLIGHT P	ERFORMANCE	RMSE - TRIM C	N and OFF			
	R	RMSE FOR FLIGHT PARAMETE	H PARAMETER	RS BY MANEUVER	œ		TEMPER	MAIN EI TEMPERATURE	MAIN EFFECTS UNIF	UNIFORM	INTERACTION TEMPERATURE X UNIFORM	TION X UNIFORM
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	ABDU, 100°F MOPP4, 100°F	F VALUE(1,7)	P VALUE	F VALUE(1,7)	P VALUE	F VALUE(1,7)	P VALUE
НОУ	HEADING ERR	6	1,68	1.83	1,43	1.67	2.89	0.1276		0.0893		0.7106
	RADAR ALT		1.46	2.03	1.40	2.72	3.27	0.1084	34.06		3.83	0.0862
HOVT	RADAR ALT	6	1.49	1.92	1.41	1.91	0.06	0.8161	5.70	(Otopia)	0:02	0.7941
	TURN RATE	9	9.24	9.43	9.37	9:38	5.27	1000 P		0.058	2.75	0.1361
RSBT	INDICATED ALT	6	32 17	34 70	35.80	59 72	503	. s 6890 U.T	338	0 1087	186	0.2147
	AIR SPEED	6	2.31	2.31	2.27	2.85	1.83	0.2185	2.64	0.1484	2.20	0.1820
	ROLL ANGLE	6	3.45	3.41	3.70	4.59	5.52	100 O OS 1 100 C	2.12	0.1885	1.52	0.2576
	TURN RATE	6	0.52	0.53	0.64	0.77	4.37	0.0750	0.46	0.5184	0.45	0.5248
<u>.</u>	AID SDEED	ō	3.44	3.44	3.20	432	104	0.3499	1 64	0.2412	877	0.720
3	SLIP	6	1.00	1.14	0.98	1.14	0.02	0.8819	8.27	3 1 8 20 0 X		0.9527
	CLIMB RATE	6	251.58	246.98	234.87	290.19	0.88	0.3785	4.93	0.0619	4.41	0.0739
	TURN RATE	6	1.00	1.00	1.03	1.09	1.65	0.2402	3.50	0.1036	1.17	0.3159
ī,	HEADING ERR	6	1.67	1.83	1.63	2.32	1.67	0.2375	4.86	0.0632	1.97	0.2034
	INDICATED ALT	6	40.64	44.38	34.81	55.19	0.33	0.5827	2.36	0.1686	1.47	0.2652
	AIR SPEED	o	2.39	2.73	2.42	3.44	7.30	90000	16.60	1500 0 m		0.4060
	ROLL	6	2.02	2.05	2.06	2.56	2.64	0.1480	3.10	0.1217		0.1170
	SLIP	6	0.34	0.52	0.30	0.63	0.22	0.6548	13.26	0.0083	1.05	0.3389
	01100		000	700	98.0	4.40	02.0	004300	67.3	0.00400	800	0.9704
	21 P	o	0.75	070	0.75	200	1.49	0.7623	0.40	0.5459		0.2623
	CLIMB RATE	6	233.28	256.00	232.86	310.89	2.26	0.1766	12.83	0.0090		0.2113
	TURN RATE	6	1.20	1.09	1.02	1.06	2.10	0.1902	0.13	0.7245	6.48	*. * 0.6383
NOE	HEADING FRR	6	5.33	5.60	4 15	5.29	1.22	03010	138	0.2735	034	0.5921
1	RADAR ALT	6	38.78	41.08	39.42	53.29	2.05	0.1897	1.46	0.2607	2.24	0.1732
	ROLL	6	4.88	4.61	4.81	5.01	0.16	0.6984	00.0	0.9487	0.14	0.7174
	SLIP	6	0.72	0.71	0.71	0.67	0.11	0.7458	0.17	0.6884	0.02	0.8939
GILOTINO	HEADING COD	o	3 18	3.18	304	6.22	4 08	0.0784	4.05	00200	372	0.0898
	RADAR ALT	6	49.15	50.11	46.07	49.90	0.34	0.5744	0.85	0.3839	0.16	0.6991
	ROLL	6	3.31	2.76	2.93	3.65	0.63	0.4502	0.33	0.5796	3.86	0.0850
	SLIP	6	0.63	0.57	0.58	0.56	0.20	0.6641	0.46	0.5154	0.03	0.8672

<u>Table 9b.</u> Repeated measures ANOVA results for flight performance RMSE.

			XEYEA	REFERENCE MEASURES ANDVA RESULTS FOR FLIGHT PERFORMANCE RMSE - TRIM OFF		,;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	R	RMSE FOR FLIGH	HT PARAMETE	IGHT PARAMETERS BY MANEUVER	R		TEMPE	MAIN E	MAIN EFFECTS	100	INTER	INTERACTION
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	ABDU, 100°F MOPP4, 100°F	FVAL	PVALUE	F VALUE(1.7)	(1.7) P VALUE	F VALUE(1,7)	F VALUE(1,7) P VALUE
RSRT	INDICATED ALT	8	38.66	43.38	43.13	83.31	2.87	0.1330	600	0207	•	
	AIR SPEED	œ	2.72	2.88	2.52	3.88	3.24	0.1149	12.90	0.19/0	5.54	0.3114
	TURN RATE	a	3.81	3.63	4.62	5.06	3.76	0.0938	0.05	0.8252	0.28	0.6242
				6.55	87.0	0.01	1.52	0.25/8	0.05	0.8300	0.42	0.5377
LCT	AIR SPEED	0	3.91	4.09	3.88	5.94	2.10	0.1905	1.69	0.2343	2.84	0.1358
	CLIMB RATE	00	294.97	306.34	1.09	1.38	0.14	0.7231	6.50		0.01	0.9361
	TURN RATE	8	1.00	1.03	1.03	1.13	0.88	0.3807	88.0	0.3807	2.19	0.1825
SI	HEADING ERR	6	1 75	9.06	1 6.8	83.0	70,	00000				2000
	INDICATED ALT		53.53	59.31	43.34	60.25	1.50	0.0682	9.31	0.2540	1.1	0.3265
	AIR SPEED	8	2.91	3.18	2.94	4.08	184	0.0817	4.90	0.0625	0.52	0.4840
	SUP	3 63	2.58	2.86	2.69	3.69	5.55	1000000	2.45	0.1617	1.29	0.2932
			6.55	0.04	0.47	1.13	0.17	0.6918	23.25		0.74	0.4191
בסו	AIR SPEED	8	3.34	4.47	3.44	6.25	2.63	0.1492	8.40			0.3137
	SLIP	8	1.3	1.34	1.41	1.75	1.78	0.2244	0.70	0.4313		0.2983
	TURN RATE	9	1.22	1.19	1.09	1.25	0.16	0.1759	15.69	0.4700	1.03	0.3447
			REPEA	REPEATED MEASURES ANOVA	ANOVA RES	RESULTS FOR FLIGHT PERFORMANCE RMSE - TRIM ON	HT PERFORMA	INCE RMSE - TI	RIM ON			
	RM	RMSE FOR FLIGH	IT PARAMETER	GHT PARAMETERS BY MANEUVER	2			MAINE	MAIN EFFECTS		INTERACTION	NOILO
2000	100000000000000000000000000000000000000						TEMPERATURE	MATURE		Ö	TEMPERATURE X UNIFORM	E X UNIFORM
MANEUVER	PAKAMEIEK	NUM 158	ABDU, 70'F	MOPP4, 70°F	ABDU, 100°F	ABDU, 100°F MOPP4, 100°F	F VALUE(1.7)	P VALUE	F VALUE(1,7)	P VALUE	F VALUE(1,7)	P VALUE
НОУ	HEADING ERR	6	1.58	1.69	1.50	1.67	0.20	0.6690	0,83	0.3885		0 0005
	RADAR ALT	6	1.33	2.22	1.39	2.89	1.88	0.2071	35.69	0.0003	0.93	0.3619
HOVT	RADAR ALT	6	1.50	2.00	1.33	2.28	0.13	0.7310		8,0085		0.2018
	IURN KATE	8	9.33	9.39	9.36	10.22	5.84	0.6428	5.50	.0.0470	6.70	W. W. O. O. S. 2. 7. 7.
RSRT	INDICATED ALT	6	25.69	26.03	27.00	38.13	1.64	0.2415	2.13	0.1882	1.53	0.2583
	ROLL ANGLE	6 6	3.09	3.19	1.53	1.88	0.34	0.5773	0.21	0.6622	1.51	0.2583
	TURN RATE	8	0.34	0.47	0.56	0.75	5.89	0.0782	1.28	0.2989	0.56	0.4786
LCT	AIR SPEED	6	2.91	2.78	2.53	2.75	000	0.3739	60.0	1000		
	SLIP	8	0.84	0.88	0.88	0.88	0.02	0.8878	0.07	0.8018	0.03	0.5847
	TURN RATE	3 00	1.00	187.63	177.53	214.44	0.01	0.9126	0.37	1,0000	2.95	0.1284
is.	HEADING EDD	٥	, E							0000:1	01.0	0.7300
	INDICATED ALT	8	27.75	29.44	26.28	48.13	2.08	0.5050	3.08	0.5081	0.68	0.4378
	AIR SPEED	8	1.88	2.31	1.91	2.81	0.83	0.3927	5.09	0.8284	0.39	0.5521
	SLIP	8	0.18	0.09	0.13	0.19	0.42	0.5391	0.28	0.6150	0.62	0.4579
IDT	Alo epico	Ç						2000	000	0000.1	00.1	0.3506
	SLIP		2.25	2.22	2.28	2.25	0.01	0.9172	0.02	0.8811	00:00	1.0000
	CLIMB RATE	6	185.50	179.78	172.34	212.06	0.32	0.5916	1.57	0.2506	1.10	0.3285
	IURN RATE	8	1.19	1.00	0.94	0.88	1.80	0.2218	0.74	0.4191	0.19	0.6767
NOE	HEADING ERR	6	5.33	5.60	4.15	5.29	1.22	0.3010	1.38	0.2735	0.31	0.5921
	RADAR ALT	σ. σ	38.78	41.08	39.42	53.29	2.05	0.1897	1.48	0.2607	2.24	0.1732
	SLIP	6	0.72	0.71	0.71	0.67	0.11	0.7458	0.00	0.9487	0.14	0.7174
CONTOUR	HEADING EDD	•	9 10	į	į						70.0	0.000
	RADAR ALT		49.15	50.11	46.07	49.80	90.34	0.0781	4.05	0.0790	3.72	0.0898
	ROLL	6	3.31	2.78	2.93	3.65	0.63	0.4502	0.33	0.5796	3.88	0.0850
	SELF	A	0.03	0.57	0.58	0.58	0.20	0.6841	0.48	0.5154	0.03	0.8672

There was not a composite RMSE equivalent to the ACS; therefore, it was not possible to perform a MANOVA on the RMSEs for all the flight variables simultaneously because of an excessive number of RMSEs compared to the relatively small sample size (nine cases). Repeated measures two-way ANOVAs (table 9a,b) were applied to determine which of the maneuver flight variable RMSEs exhibited statistically significant differences across the factor levels. Analysis was performed separately for maneuvers flown with AFCS on, off, and both on and off.

ANOVA results for flight performance RMSEs averaged across AFCS on and off for all iterations of each maneuver revealed larger RMSEs associated with the 100°F temperature on at least one variable in three (HOVT, RSRT, SL) of the eight (37.5 percent) maneuvers and with the encumbered MOPP4 ensemble for at least one variable in five (HOV, HOVT, SL, LCT, LDT) of the eight (62.5 percent) variables (table 9a,b). Larger RMSEs were associated with the 100°F temperature on 3 of 29 (10.3 percent) variables and with the encumbered MOPP4 ensemble on 8 of 29 (27.6 percent) variables. Only 1 of 29 (3.4 percent) variables exhibited a temperature by uniform interaction.

ANOVA results for flight performance RMSEs averaged only across iterations of each maneuver flown with AFCS on revealed larger RMSEs associated with the 100°F temperature on at least one variable in two (HOVT, RSRT) of the eight (25 percent) maneuvers and with the encumbered MOPP4 ensemble on at least one variable in 2 (HOV, HOVT) of the eight (25 percent) maneuvers (table 10). Larger RMSEs were associated with the 100°F temperature on 2 of 29 (6.9 percent) variables and with the encumbered MOPP4 ensemble on 3 of 29 (10.3 percent) variables. Only 1 of 29 (6.9 percent) variables exhibited a temperature by uniform interaction.

ANOVA results for flight performance RMSEs averaged only across iterations of each maneuver flown with AFCS off revealed larger RMSEs associated with the 100°F temperature on at least one variable in one (SL) of the four (25 percent) maneuvers and with the encumbered MOPP4 ensemble on at least one variable in all (SL, RSRT, LCT, LDT) of the maneuvers (table 10). Larger RMSEs were associated with the 100°F temperature on 1 of 17 (5.9 percent) variables and with the encumbered MOPP4 ensemble on 7 of 17 (41.2 percent) variables. Only 1 of 17 (5.9 percent) variables exhibited a temperature by uniform interaction.

Table 10.

Effects of encumbered MOPP4 ensemble in hot conditions on RMSE for maneuvers.

Maneuver	AFCS (trim) on & off	AFCS on	AFCS off
HOV	1	1	n/a
HOVT	1	+ +	n/a
RSRT	**	1	t
LDT	1	+ +	1
SL	1	+	1
LCT	1	↔	1
Contour	+	+	n/a
NOE	++	+	n/a

^{* 1 -} indicates a significant increase in RMSEs.

Maximum and minimum values

Maximum and minimum values were obtained for each flight performance variable during each iteration of all the maneuvers. Maximum and minimum values were then averaged across iterations for each type of maneuver and test condition.

ANOVA results for maximum flight data values averaged across iterations of each maneuver flown with both AFCS on and off revealed that larger magnitudes of the maximum values were associated with the 100°F temperature for at least one variable in one of eight (12.5 percent) maneuvers and the encumbered MOPP4 for at least one variable in three of the eight (37.5 percent) maneuvers. Larger magnitude maximums were associated with the 100°F temperature in 1 of 23 (4.3 percent) variables and the encumbered MOPP4 in 3 of 23 (13 percent) variables. Only 1 of 23 (4.3 percent) variables exhibited a temperature by uniform interaction on maximums.

ANOVA results for minimum flight performance parameter values averaged across both AFCS on and off for all iterations of each maneuver revealed that adverse effects on performance were associated with the 100°F temperature for at least one variable in one of eight (12.5 percent) maneuvers and the encumbered MOPP4 for at least one

⁻ indicates no significant increase or decrease.

<u>Table 11.</u> Fraction of maneuver types having statistically worse flight performance.

variable in five of the eight (37.5 percent) maneuvers. Minimums associated with worse performance were associated with the 100°F temperature in 1 of 23 (4.3 percent) variables and the encumbered MOPP4 in 10 of 23 (43.5 percent) variables. Only 1 of 23 (4.3 percent) variables exhibited a temperature by uniform interaction on minimums.

ANOVA results for maximum flight performance parameter values averaged across only those iterations of each maneuver flown with AFCS on revealed that larger maximum value magnitudes were associated with the 100°F temperature for zero of eight (0 percent) maneuvers and the encumbered MOPP4 for at least one variable in two of the eight (25 percent) maneuvers. Larger magnitude maximums were associated with the 100°F temperature in none of the variables and the encumbered MOPP4 in 2 of 25 (8 percent) variables. Only 1 of 25 (4 percent) variables exhibited a temperature by uniform interaction on maximums.

ANOVA results for minimum flight performance parameter values averaged across only those iterations of each maneuver flown with AFCS on revealed that adverse effects on performance were associated with the 100°F temperature for at least one variable in one of eight (12.5 percent) maneuvers and the encumbered MOPP4 for at least one variable in four of the eight (50 percent) maneuvers. Minimums associated with worse performance were associated with the 100°F temperature in 1 of 25 (4 percent) variables and the encumbered MOPP4 in 6 of 25 (24 percent) variables. None of the variables exhibited a temperature by uniform interaction on minimums.

ANOVA results for maximum flight performance parameter values averaged across only those iterations of each maneuver flown with AFCS off revealed that larger maximum value magnitudes were associated with the 100°F temperature for one of four (25 percent) maneuvers and the encumbered MOPP4 for at least one variable in three of the four (75 percent) maneuvers. Larger magnitude maximums were associated with the 100°F temperature in 1 of 15 (6.7 percent) variables and the encumbered MOPP4 in 4 of 15 (26.7 percent) variables. Only 1 of 15 (6.7 percent) variables exhibited a temperature by uniform interaction on maximums.

ANOVA results for minimum flight performance parameter values averaged across only those iterations of each maneuver flown with AFCS off revealed that adverse effects on performance were associated with the 100°F temperature for at least one variable in one of four (25 percent) maneuvers and the encumbered MOPP4 for at least one variable in four of the four (100 percent) maneuvers. Minimums associated with worse performance were associated with the 100°F temperature in 1 of 15 (6.7 percent) variables and the encumbered MOPP4 in 6 of 15 (40 percent) variables. None of the variables exhibited a temperature by uniform interaction on minimums.

Correlations between flight performance scores and aviator characteristics

There were no statistically significant correlations having magnitudes greater than 0.64 between average composite flight scores for the eight types of flight maneuvers (HOV, HOVT, SL, LCT, LDT, RSRT, NOE, and Contour) and personal characteristics of the volunteer aviators (age, height, weight), physical or heat stress training (PFT scores, heat illness prevention training), or flight hours (total, UH-60, and simulator). Sixteen percent of the correlations reached statistical significance. However, these had relatively small magnitudes (between 0.35 and 0.64) and therefore were not particularly useful. Eighty-four percent of the correlations between the variables were less than 0.35 in magnitude (appendix H) and not statistically significant.

Spectral analysis of cyclic and collective inputs

Two channels of data for cyclic inputs (longitudinal, i.e., fore-aft and lateral, i.e., left-right pitch deviation in degrees from a reference center-position) and one channel for collective position were obtained from the controls of right seat pilots during hover and hover turn maneuvers. The sampling rate for each channel was 10 per second (10 Hz), which allowed for a maximum input component of 5 Hz before causing aliasing effects. Control components of significant magnitude at frequencies greater than 5 Hz seemed unlikely, although no references regarding this issue were available for corroboration. Vibrations transmitted to the controls from various mechanical systems in the simulator, particularly the seat shaker that emulates engine and rotor vibration, were potential sources of higher frequency inputs into the controls. However, the power spectra visually had a smooth exponential-like decay with respect to increasing frequency that was not consistent with significant aliasing effects.

Fast Fourier Transform (FFT) analysis was performed on the cyclic and collective input data to obtain their power spectra. Power sum, peak power frequency, skewness of the power-frequency distribution, and frequencies for 10 percent, 50 percent and 90 percent cumulative power were then obtained from the FFT results for each of the four test conditions (appendix E). The zero frequency (DC) components, which represented control channel offsets, was excluded in calculating spectral results. Flight control input data for the first three right seat pilots were missing due to an inadvertent delay at the beginning of the study in initiating the software for these data acquisition channels. Therefore, six right seat pilots represented the effective sample size for the spectral analysis. Spectral results for the hover and hover turns were averaged across iterations prior to hypothesis testing.

Tabular results for cyclic and collective inputs during the hover maneuver (appendix H) revealed that total power sums were much greater for the collective input channel, while the frequency for 90 percent cumulative power was smaller for the collective than for the cyclic channels. This corresponds to larger but slower collective inputs

compared to those for the cyclic or, conversely, smaller but more rapid cyclic inputs compared to the collective. This is consistent with subjective assessments of how these controls are manipulated during routine flight.

Four- and two-way ANOVAs (appendix E) were performed on the power spectra from the collective and two cyclic channels for the hover and hover turn maneuvers. The repeated measures factors were temperature, uniform, and cumulative power levels (10, 50, and 90 percent). The independent multiple variates were the frequencies at which the specified cumulative power levels were attained for each of the three different control channels. For the hover maneuver, there were statistically significant effects with respect to temperature (p=0.0226), uniform (p=0.048), and their interaction (p=0.0256). However, two-way (temperature and uniform) ANOVAs per data channel and power band revealed a significant uniform effect (p=0.0277) only for the fore-aft cyclic control channel for the 90 percent cumulative power frequency and a temperature by uniform interaction (p=0.0428) for the 10 percent cumulative power frequency for the same channel. The MANOVA for the hover turn maneuver indicated marginal temperature (p=0.0820) and uniform (p=0.0688) effects, but a statistically significant temperature by uniform interaction (p=0.0439). However, two-way ANOVAs on the frequencies for the percent cumulative power for each data channel revealed no significant temperature, uniform, or interaction effects.

Statistical analysis of the power spectrum of cyclic and collective inputs during hover and hover turns indicated statistically significant, but poorly localized, effects of heat stress and MOPP4. The sample size (for technical reasons explained above) for this analysis, however, was too small to have much statistical power for reliably detecting small differences in power spectra between conditions.

Simulator incidents

During test sessions, pilot induced significant simulator incidents were recorded on a flight incident form (appendix I). Incidents that were tracked included main-rotor and stabilator strikes, loss of control at altitude, controlled flight into terrain, and crashes during hover or while attempting to land. The enumeration of the quantity and rates of the simulator flight incidents is delineated in appendix D. The average number of flight incidents per test session was: 2.9 for ABDU-cool, 3.1 for MOPP4-cool, 2.4 for ABDU-hot, and 0.89 for MOPP4-hot. Incident rates (number per hour) were calculated to normalize the results for differences in simulator endurance times across the four different test conditions. Total incidents per hour were: 0.69 for ABDU-cool, 0.75 for MOPP4-cool, 0.61 for ABDU-hot, and 1.08 for MOPP4-hot.

However, since there were relatively few adverse incidents, this resulted in low statistical power to detect significant differences across the test conditions. Standard deviations for the flight incidents data were also approximately of the same magnitude

as the mean number of incidents and incident rates. Consistent with this observation, two-way repeated measures ANOVA revealed no statistically significant differences across the test conditions for either cumulative number, or rates, of flight incidences.

MATB

Results for performance on the computer-based MATB were somewhat mixed (appendix F). For some variables, such as various response times and errors for the communications task, there was a significant interaction effect frequently indicating paradoxically better performance in the encumbered MOPP4-hot condition. On the other hand, keyboard entry times for responding to perceived changes in lights and dials showed a significant uniform effect with worse performance in the MOPP4 condition (appendix F). RMS tracking error also showed a statistically significant uniform effect (p=0.0197). RMS tracking error was 60 percent greater while wearing the encumbered MOPP4 ensemble. Temperature was a solitary factor for time out and false alarm errors for lights and dials, with more errors in the hot condition (p=0.342).

First order correlations between mean MATB performance variables (averaged across iterations for each test session) and average composite flight scores for each flight maneuver or flight mode (also averaged across iterations per test session) are presented in appendix H. The definitions for the MATB variables are provided in appendix H.

Correlations between MATB results and ACSs for the different maneuvers revealed no consistent pattern of correlations across test conditions. The scattered nature of the correlations that reached statistical significance was more indicative of the effects of chance or random fluctuations in unmeasured parameters rather than true associations. For this study, none of the MATB performance variables, taken individually within test conditions, were good predictors of flight performance as measured by composite scores.

Task load index questionnaire

To evaluate for possible differences in responses to the six TLX questions across the different test conditions, two-way (temperature and uniform as within test subject factors) ANOVAs were performed with task (flying the set of standard maneuvers versus performing the MATB) as a between subjects factor. The results are depicted in appendix G. There was a significant (p=0.044) interaction between task, temperature, and uniform for physical demand. Consistent with significant main effects for temperature (p=0.0001) and uniform (p=0.005), the mean responses showed that physical demand ratings were higher for both tasks in the hot condition and while wearing the encumbered MOPP4 ensemble. The perception of greater physical workload in the encumbered MOPP4 ensemble was exacerbated by heat stress.

Mental demand ratings exhibited only temperature (p=0.04) and uniform (p=0.16) effects. Significantly higher mental demand ratings occurred for the hot and MOPP4 conditions. Temporal demand ratings differed only with respect to uniform (p=0.008), with the higher ratings for the MOPP4 uniform. Performance ratings did not differ statistically across the levels of temperature, uniform, or task. Effort ratings also showed only temperature (p=0.033) and uniform (p=0.002) effects with greater subjective effort required in the hot and MOPP4 conditions. Frustration ratings were significantly (p=0.028) greater while wearing the encumbered MOPP4 ensemble. There was also a task-temperature interaction due to greater frustration ratings, averaged across uniforms, for flying the set of standard maneuvers compared to the MATB in the hot condition, whereas flying was less frustrating than the MATB in the cool condition.

Multiple correlations between the responses for the six TLX questions and the ACSs were performed for each of the four test conditions and the eight types of flight maneuvers (appendix H). For each condition, only 1 or 2 of the 48 cross correlations (TLX by ACS) were both statistically significant and greater in magnitude than 0.6. The location of those significant cross-correlations in the correlation matrix differed between test conditions.

Discussion

Aircrews wearing the encumbered MOPP4 BDO over ABDU aviator uniform in the hot condition incurred significantly more physiological and psychological strain as reflected in the dramatically elevated core temperature and heart rate profiles described in detail in a previous technical report (Reardon, et al., 1996). The responses to the mood and symptoms and profile of mood states questionnaires indicated significantly increased discomfort and stress for that condition. The TLX responses revealed increased perceived workload.

The existence of a statistically significant overall effect of temperature and uniform type on flight performance was confirmed by an ANOVA on the average composite flight performance scores. Subsequent ANOVA analysis on individual flight performance parameters reaffirmed the adverse effects of hot (100°F) cockpit conditions and the encumbered MOPP4 aviator uniform on flight performance. With few exceptions, the direction of flight performance parameter changes for the MOPP4-hot condition was consistently in the direction of worse performance.

UH-60 simulator flight performance

The encumbered MOPP4 ensemble adversely affected the greatest number of flight performance parameters. The hot temperature condition was second in the number of flight performance parameters adversely affected. Less frequent was adverse performance due to the simultaneous effects of MOPP4 and hot conditions, as well as temperature by uniform interactions. The pattern of factor effects was consistently maintained regardless of whether differences in flight performance, across the two temperature and uniform conditions, were analyzed as scores, RMSEs, maximums, or minimums. Flight parameter performance scores seemed to be slightly more sensitive indicators of differences in pilot performance across conditions than RMSE, maximum, or minimum values.

Composite flight performance scores were significantly decremented during UH-60 simulator flights in the MOPP4-hot condition. When averaged across flight segments flown with AFCS on and off, composite flight performance scores were adversely affected in 62.6 percent of the eight types of maneuvers. For only the segments where the AFCS was on, the average composite flight performance score was decreased in 37.5 percent of the eight maneuver types.

Evaluation of the various measures of flight performance clearly indicated significant adverse effects on pilot performance in the UH-60 simulator in the hot condition and while wearing the encumbered MOPP4 flight uniform. However, the average number and rates of simulator incidents (crashes, rotor and tail strikes, and loss of control) were not statistically worse for the hot or MOPP4 conditions.

The significant number of flight variables adversely affected by wearing the MOPP4 ensemble and heat stress were in marked contrast to the negative results reported by Hamilton et al. (1982) for a UH-1 in-flight evaluation of the effects of heat stress and standard versus several MOPP4 aviator uniforms. However, that in-flight study had greater data variance due to inability to fully control in-flight environmental conditions such as day to day variations in turbulence and other meteorological effects on aircraft controllability and performance. Our laboratory-based evaluation and use of an environmentally controlled UH-60 aircraft gave us greater statistical power to detect differences across conditions.

This study was similar to that reported by Thornton et al. in 1992. Thornton used the environmentally controlled UH-60 simulator to evaluate the standard one-piece Nomex aviator uniform and the MOPP4 AUIB ensemble in hot (WBGT = 29.4°C or 85°F) and cool (WBGT = 16.8°C or 62.24°F) conditions with and without microclimate cooling (in the hot condition). Numerous flight performance parameters were adversely affected in the hot condition and while wearing MOPP4. The parameters most frequently affected were (from most to least frequent) heading, airspeed, roll, altitude, rate of turn, vertical

speed, and slip. For this study, the most frequently affected flight performance parameters for flight segments with AFCS on were altitude, heading, and roll. With AFCS off, the most frequently affected parameters by heat stress and MOPP4 were climb/descent rates, airspeed, and altitude. However, results from this study are not exactly comparable with Thornton's results because of the considerable differences in uniforms, cockpit temperatures, and flight profiles across the two studies.

Spectral analysis of cyclic and collective input data for the hovers and hover turns was performed and revealed significant differences in control input power spectra with respect to iteration, uniform, temperature and uniform, as well as their interaction. The power spectra for cyclic and collective inputs for the hover turn only showed a temperature-uniform interaction. Further analysis of the spectral results, however, will need to be performed to determine the practical significance of the spectral differences across conditions.

TLX questionnaire

Composite TLX questionnaire results indicated that flying the simulator and performing the MATB tests were both perceived as more physically and mentally demanding, required more effort, and caused greater frustration in the MOPP4-hot condition than during the other three less stressful conditions. For the responses taken collectively, the effects of uniform (encumbered MOPP4 associated with higher ratings) had significant and adverse effects on five of the six TLX work load ratings. Temperature alone had a significant and adverse effect on three of the six ratings. Type of task as an interaction factor influenced only two of six ratings. Correlations between composite flight performance scores and TLX questionnaire responses indicated no significant linear relationship between subjective work load ratings and flight performance scores for any of the maneuvers or modes of flight.

MATB

Although the MOPP4 ensemble was associated with reduced performance on the MATB visual monitoring and tracking tasks, MATB performance did not correlate consistently with flight performance scores. These results, therefore, do not appear to support the use of the MATB as a predictor of flight performance or its use as a surrogate for simulator-based evaluation of the effects of heat stress and different types of aviator uniforms on flight performance. On the other hand, this study was not designed specifically to define or validate predictive relationships between the MATB and UH-60 simulator flight performance. For example, although the MATB tracks reaction times as well as detection failures and false alarms for the simulated warning lights and dials subtask, a corresponding method for capturing similar stimuli and responses for the pilots flying the simulator was not incorporated. That is, data were not collected on the effects of heat stress and MOPP4 on responsivity to visual

detection of changes in actual cockpit instruments nor for simulated radio transmissions and radio frequency changes for the actual radios in the simulator. That would have entailed an additional experiment. Therefore, the extent to which the MATB can predict performance in the UH-60 simulator for a similar range of tasks was not really resolved in this study.

Conclusions

The preponderance and consistency of the statistically significant flight performance results indicated that heat stress and the encumbered MOPP4 ensemble adversely affected pilot endurance and performance in the UH-60 simulator. The encumbered MOPP4 ensemble was the most frequent cause of decrements in flight performance. Next in frequency of adverse effects was heat stress, followed by the interaction effects of both heat stress and the encumbered MOPP4 uniform. The operational significance of the flight performance decrements alone, however, is uncertain since neither heat stress nor the encumbered MOPP4 ensemble were associated with higher rates of simulator crashes or other potentially catastrophic in-flight incidents. Nevertheless, as detailed in a preceding technical report (Reardon et al. 1996) on the physiological and psychological results, the effects of wearing the encumbered MOPP4 flight uniform in the hot condition caused large increases in core and skin temperatures, heart rates, sweat rates, and increases in perceived workload and symptoms of discomfort and stress.

Mission completion rates were zero in the MOPP4-hot condition because of the severe physiological and psychological strain that occurred within 2 hours of exposure. Endurance times in that condition were most frequently limited by having reached safety restrictions for core temperature and heart rate. Some crews could probably have continued for a limited time longer after reaching the safety limits. However, it is likely that without the safety limits, they eventually would have succumbed to severe heat exhaustion or heat stroke. On the other hand, it is also plausible that in an operational setting, the pilots would have actually had lower endurance times in MOPP4-hot conditions if the study conditions inadvertently provided artificially elevated levels of motivation. Likewise, in actual aircraft, the crews might have discontinued the missions sooner because of concerns about the effects of heat stress on the risk of crashing and the possibility of severe consequences to themselves and their passengers.

Performance on the MATB computer test also revealed performance decrements associated with cockpit heat stress and wearing the encumbered MOPP4 ensemble. Reaction times and errors for detecting and responding to changes in simulated warning lights and strip gauges and RMSE for target tracking were significantly worse in the hot and MOPP4 conditions. However, it was not possible to fully and fairly compare MATB and simulator performance results because this study was not designed or able

to capture similar data for responses to changes in lights and dials for the actual cockpit instrument panel. It will require a separate study to validate all the MATB components with respect to similar tasks in the UH-60 simulator.

There were no consistent, statistically significant, correlations between flight performance scores or MATB performance measures and test subject characteristics such as age, morphology, flight history, physical training test performance, and amount of heat stress training. Likewise, there were no consistent correlations between flight performance scores and MATB results or between flight performance scores and TLX questionnaire ratings within conditions. The average responses for most of the TLX questions, however, were significantly different with respect to the two temperature and uniform conditions with higher workload ratings for the hot and encumbered MOPP4 conditions. There were no significant differences in workload ratings between flying the set of standard maneuvers and the MATB performance test.

References

- ATCOM. 1995. Operational Requirements Document for the Air Warrior (draft). St. Louis, MO.: Aviation and Troop Command.
- Breckenridge, J.R. and Levell. 1970. Heat stress in the cockpit of the AH-1G Hueycobra helicopter. <u>Aerospace Medicine</u>. 41(6):621-626.
- Berglund, L., Gonzalez, R. and Gagge, A. 1990. Predicting human performance decrement from thermal discomfort and ET. <u>The Fifth International Conference on Indoor Air Quality and Climate.</u> J. A. J Stolwijk (Ed.), pp. 215-220, Toronto, Canada.
- Comstock, J.R., and Arnegard, R.J. 1992. <u>The Multi-Attribute Task Battery for human operator workload and strategic behavioral research</u>. Hampton, VA: NASA Langley Research Center, NASA Technical Memorandum 104174.
- Department of the Army. 1996. Aircrew training manual, utility helicopter, UH-60. U.S. Army training circular, TC 1-212. Washington, DC: U.S. Government Printing Office.
- Department of the Army. 1994. Operator's manual for Army models, UH60A helicopters, UH60L helicopters, EH60A helicopters. Technical Manual 1-1520-237-10 Washington, DC: U.S. Government Printing Office.
- Froom P., Shochat I., Strichman L., Cohen A., and Epstein Y. 1991. Heat stress on helicopter pilots during ground standby. <u>Aviat. Space Environ. Med.</u> 62: 978-81.
- Hamilton, B.E., Simmons, R.R., and Kimball, K.A. 1982. <u>Psychological effects of chemical defense ensemble imposed heat stress on Army aviators</u>. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 83-6.
- Hancock, P.A. 1982. Task categorization and the limits of human performance in extreme heat. Aviat. Space Environ. Med. 53:8 778-784.
- Hart S.G., and Staveland, L.E. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Eds. P.A. Hancock and N. Meshkati. <u>Human Mental Workload.</u> Amsterdam: North Holland Press.
- Knox III, F.S., Nagel, G.A., Hamilton, B.E., Olazabal, R.P., and Kimball, K.A. 1983.

 Physiological impact of wearing aircrew chemical defense protective

 ensembles while flying the UH-1H during hot weather. Fort Rucker, AL: U.S.

 Army Aeromedical Research Laboratory. USAARL Report No. 83-4.

- Kobrick J.L. and Johnson R.F. 1992. <u>Effects of Hot and Cold Environments on Military Performance</u>. Natick, MA: U.S. Army research Institute of Environmental Medicine. Technical Report T7-92.
- Lussier J.W. and Fallesen J.J. 1987. Operation of the tactical computer terminal in mission oriented protective posture 4 clothing. Fort Levenwoth, KS: Army Research Institute.
- Muza S.R., Banderet L., and Forte V.A. 1995. The Impact of the NBC Clothing

 Ensemble on Respiratory Function and Capacities During Rest and Exercise.

 Natick, MA: U.S. Army research Institute of Environmental Medicine.

 Technical Report T95-12.
- Ramsey, J.D. 1995. Task performance in heat: a review. Ergonomics. 38:1, 154-165.
- Reardon, M.J., Smythe III, N., Omer, J., Helms, B., Hager, J.D., Freeze, M., and Buchanan, D. 1996. <u>Physiological and Psychological Effects of Thermally Stressful UH-60 Simulator Cockpit Conditions on Aviators Wearing Standard and Encumbered Flight Uniforms.</u> Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory; USAARL Report No. 97-06.
- Taylor, H. and Orlansky, J. 1993. The effects of wearing protective chemical warfare combat clothing on human performance. <u>Aviat. Space Environ. Med.</u> 64: A1-A41.
- Thornton, R., Caldwell, J.L., Clark, W., Guardiani, F., and Rosario, J. 1992. Effects on physiology and performance of wearing the aviator NBC ensemble while flying the UH-60 helicopter flight simulator in a controlled heat environment. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 92-36.
- Thornton, R., and Guardiani, F. 1992. <u>The Relationship between environmental conditions and UH-60 cockpit temperature</u>. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 92-25.
- USAAC. 1989. <u>Blackhawk UH-60A Mission profiles and operational mode summaries</u> (MP/OMS). Fort Rucker, AL: U.S. Army Aviation Center.
- USAARL. 1995. <u>Statement of work for evaluation process (EP) support Air Warrior concept exploration</u>. Fort Rucker AL: U.S. Army Aeromedical Research Laboratory.

- USAARL. 1991. <u>HAWK data acquisition system user's guide</u>. Ft. Rucker, AL: U.S. Army Aeromedical Research Laboratory.
- Wyndham, C.H. 1973. The physiology of exercise under heat stress. <u>Annual Review of Physiology</u>. 35:193-220.

Appendix A. Flight scripts.

<u>Table A-1.</u> Air assault scenario.

Notes			Admin Mood/Symptom		Cue Co-pilot to prepare for MATB	Cue Co-pilot to begin MATE							Administer TLX to pilot	Admin TLX to Co-pilot at end of MATB	
Variables to score	Alt, driff, hdg	Alt, drift, turn rate	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	None	AS, alt, trim, roll, hdg	AS, alt, trim, roll, turn rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, descent rate	AS, alt, trim, roll, hdg	AS, trim, roll, hdg, descent rate	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim
Standards	hdg 360°,10 ft	10 ft	var AS, const alt	var AS, const alt		270°,2k', 120kts	to hdg 270°,2k',120kts	270°,2k°,120kts	to hdg 090",2k 2.5k,120kts	090°,2.5k°,120kts	to hdg 270°,2.5k 2k,120kts	270°,2 0k°,120kts	270°,2 - 1k' 120kts	var AS, const alt	var AS, var alt<25
Κm			10.9	10.5										13.4	3.3
Min	1	1	3	2.5	4	1	2	+	1	+	1	1	5	3.5	-
Maneuver	Hover	Hover turn (360°)	Contour to wp2	Contour to wp3	Arrived at wp3 Ascend to 2k'	188	360° RSRT	785	L, 180°, ISRT	788	L, 180°, ISRT	S&L	Descend then go to wp4	Contour to wp5	NOE to wp6
Action	Manual start/stop	Manual start/stop	Manual start	Auto stop/start	Auto stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Auto start	Auto stop/start
WP	-	-	1	2	3	3+	3+	3+	3+	3+	3+	#	3+	4	5
Man	-	2	3	4		5	6	7	S	6	10	11	12	13	14
Time	-	2	5	7.5	11.5	12.5	14.5	15.5	16.5	17.5	18.5	19.5	21.5	25	26

Table A-1(continued). Air assault scenario.

Notes				Admin Mood/Symptom	Cue Co-pilot to prepare for MATB	Cue Co:pilot to begin							Administer TLX to Pilot	Admin TLX to Co-pilot at end of MATB	
Variables to score	None	Alt, driff, hdg	Alt, drift, turn rate	Alt,grnd track,roll,trim	None	AS, alt, trim, roll, hdg	AS, alt trim, roll, turn rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, descent rate	AS all, trim, roll, hdg	AS, trim, roll, hdg, descent rate	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim
Standards		hdg 360°, 10 ft	10 ft	var AS, const alt		270°,2K', 120Kts	270°,2k',120kts	270°,2K,120kts	to hdg 090°,2k - 2.5k°,120kts	090°,2 5K',120Kts	to hdg 270°2 5k + 2k 120kts	270°,2K',120Kts	270°,2k 1k',120kts	var AS, const alt	var AS, const alt
Km				5.3										12.5	11.6
Min		1	-	1.8	4	+	2	1	+	**	++	-	7	က	3
Maneuver	Arrived at wp6	Hover	Hover turn (360°)	Contour to wp7	Arrived at wp7 Ascend to 2k'	188	360° RSRT	581	L, 180°, ISRT	S&L	L, 180°, ISRT	788	Descend then go to wp8	Contour to wp9	Contour to wp10
Action	Auto stop	Manual start/stop	Manual start/stop	Auto start	Auto stop	Manual start/stop Trim off	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop Trim on	Auto start	Auto stop/start
WP	9	9	ဖ	9	7	7+	+2	*	t	+	±.	‡	7+	æ	6
Man		15	91	17		18	19	20	21	22	23	24	25	26	27
Time		27	28	29.8	33.8	34.8	36.8	37.8	38.8	39.8	40.8	42.8	83 89	46.8	49.8

Table A-1(continued). Air assault scenario.

Notes	Admin Mood/Symptom								Cue Co-pilot to prepare for MATB	Cue Co-pilot to begin						
Variables to score	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt,grnd track,roll,trim	None	Alt,driff,Hdg	Alt, drift, turn rate	Alt,grnd track,roll, trim	None	AS, alt, trim, roll, hdg	AS, alt trim, roll, turn rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, all, trim, roll, hdg	AS, trim, roll, turn rate, descent rate	AS, alt, trim, roll, hdg
Standards	var AS, const alt	var AS, const alt	var AS, var alt<25	Vas AS Var Alt <25	hdg 360°, 10 ft	Hdg 360°,10 ft	10 ft	var AS, const alt		270°,2k",120kts	270° 2k', 120kts	270°,2k',120kts	to hdg 090°.2k - 2.5k,120kts	090°,2.5k°,120kts	to hdg 270° 2.5k - 2k 120kts	270° 2 0k', 120kts
Km	13	16	2.8	8		1		5.3								
Min	3.5	4.5	2.5	2.5		1	1	1.8	4	1	N	+	+	+	‡	+
Maneuver	Contour to wp11	Contour to wp12	NOE to wp13	Noe to wp6	Arrive wp6	Hover	Hover turn (360°)	Contour to wp7	Arrived at wp7 Ascend to 2k'	188	360° RSRT	S&L	L, 180°.15RT	S&L	L, 180°, ISRT	SAL
Action	Auto stop/start	Auto start	Auto stop/start	Auto stop/start	Auto stop	Manual start/stop	Manual start/stop	Manual start	Auto stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop
WP	10	11	12	13	9	9	9	9	2	7+	7+	7+	+,	7+	+4	4.4
Man	28	29	30	31		32	33	34		35	36	37	38	39	95	#
Time	53.3	57.8	60.3	62.8		63.8	64.8	9.99	9'0'	716	736	74.6	756	76.6	77.6	78.6

able A-1(continued). Air assault scenario.

v doctor	Administer TLX to pillot	Admin TLX to Co-pilot at end of MATB	Admin Mood/Symptom			Cue Co-pilot to prepare for MATB	Cue Co-pilot to begin							Administer TLX to pilot	Admin TLX to Co-pilot at end of MATB
Variables to score	AS, trim, roll, hdg, descent rate	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	None	AS, alt, trim, roll, hdg	AS, att. trim, roll, tum	AS, all, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, descent rate	AS, alt, trim, roll, hdg	AS, trim, roll, hdg, descent rate	Alt, grnd track, roll, trim
Standards	270°,2 1K',120kts	var AS, const alt	var AS, const alt	var AS, const alt	var AS, var alt<25		090°,2k',120kts	090°,2k°,120kts	090°,2k',120kts	to hdg 270° 2k - 2.5k' 120kts	270°,2 5K,120kts	to hdg 090°, 2.5k 2k', 120kts	090°,2.0k; 120kts	090°, 2 = 1K, 120kts	var AS, const alt
χ		12.5	11.6	12.2	10										12.4
Min	2	3	ဗ	က	2	4	+	2	#	ŧ	‡	1	+	2	က
Maneuver	Descend then go to wp8	Contour to wp9	Contour to wp10	Contour to wp14	NOE to wp15	Arrive at wp15 Ascend to 2K'	188	360° RSRT	S&L	L. 180°, ISRT	788	L. 180°, ISRT	381.	Descend then go to wp16	Contour to wp1
Action	Manual start/stop	Auto start	Auto stop		Auto start	Auto stop	Manual start/stop Tom off	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop Trim on	Auto start
WP	7+	8	6	10	14	15	±5-	15+	‡	ţ	15+	15+	15.	+ 97	16
Man	42	43	44	45	46		47	48	49	50	51	52	53	54	55
Time	80.6	83.6	86.6	89.6	91.6	92.6	98.8	986	986	100.6	1016	102.6	103.6	105.6	108.6

Table A-1(continued). Air assault scenario.

Time	Time Man WP	WP	Action	Maneuver	Min Km	Km	Standards	Variables to score	Notes
		1	Auto stop	Arrived at wp1				None	
109.6	26	1	Manual start/stop	Hover	-		hdg 360°,10 ft	Alt, drift, hdg	
110.6	22	1	Manual start/stop	Hover turn (360°)	-		10 ft	Alt, driff, turn rate	Admin Mood/Symptom At end of maneuver
				Total	110.6				

<u>Table A-2.</u> MEDEVAC scenario.

Notes			Admin Mood/Symptoms	Cue Co-pilot to prepare for MATB	Cue Co-pilot to begin MATE							Administer TLX to pilot	Admin TLX to Co-pilot at end of MATB	Admin Mood/Symptoms		Cue Co-pilot to prepare for MATB	Cue Co-pilot to begin MATB
Variables to score	Alt, drift, hdg	Alt, drift, turn rate	Alt, grnd track, roll, trim		AS, alt, trim, roll, hdg	AS all, trim, roll, turn rate	AS, all, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, all, trim, roll, hdg	AS, trim, roll, turn rate, descent rate	AS, alt, trim, roll, hdg	AS, trim, roll, hdg, descent rate	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	None	AS, alt, trim, roll, hdg
Standards	10 ft alt, 360°hdg		var AS, const alt		120kts,2k',180°	360%	120kts,2k',180°	2 0k→2.5k′	120kis,2.5k,360°	3.5k →2k	120kts, 2.0k', 180°	120kts, 2.0 -> 1.0k' 180°	var AS, const alt	var AS, var alt<25	var AS, var alt<25		120kts,2k°,270°
Km			20										8.4	11.8	14.8		
Mins	1	1	5.3	4	Ţ	N	Ţ	1	1	1	+	N	2	3	4	4	-
Maneuver	Hover	Hover turn (360°)	Contour to wp19	Reached wp19 Ascend to 2k'	S&L	RSRT	S&L	L. 180°, 1SRT	S&L	L, 180°,4SRT	785	Descend then go to wp20	Contour to wp21	Contour to wp22	NOE to wp23	Arrive at wp23 Ascend to 2k'	788
Action	Manual start/stop	Manual start/stop	Manual start	Auto stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual startistop	Manual star/stop	Manual startistop	Manual start/stop	Menuel start/stop	Auto start	Auto stop/start	Auto stop/start	Auto stop	Manual start/stop Trim off
WP	18	18	19	19	19+	* 6-	å	.	* 67	+61	+61	+6+	20	24	22	23	23+
Man	-	2	က		4	45	g	۲	82	G.	0	Ε	12	13	14		15
Time	-	2	7.3	11.3	£ 23	143	15.3	16.3	2 2	18.3	19.3	21.3	23.3	26.3	30.3	34.3	35.3

Table A-2 (continued)...
MEDEVAC scenario.

Action	5 ®		Maneuver	Mins	Ж	Standards	Variables to score	Notes
Manual start/stop R5		R	RSRT	~		360°	AS, alt, trim, roll, turn rate	
Manual start/stop S&L		88		-		120kts,2k°,270°	AS, alt, trim, roll, hdg	
Manual startstop L., 180°, †SRT	j.	L, 180°, †	SRT	1		2.0k → 2.5k′	AS, trim, roll, turn rate, ascent rate	
Manual start/stop S&L		S&L		1		120kls,2.5k°,090°	AS, all, tem, roll, hdg	
Manual start/stop L., 1807, LSRT	T.	L, 180°, L	SRT	1		2.5k → 2k'	AS, trim, roll, turn rate, descent rate	
Manual start/stop S&L		S&L		+		120kts,2 0k,270°	AS, alt, tom, roll, hdg	
Manual start/stop Descend Trim on then go to wp24	#	Descen then go to v	d Vp24	O.		120kts, 2.0k, .+ 1.0k', 270*	AS, trim, roll, hdg, descent rate	Administer TLX to pilot
Auto start Contour to wp25		Contour to v	vp25	3	10.6	var AS, const alt	Alt, grnd track, roll, trim	Admin TLX to Co-pilot at end of MATB
Auto stop/start NOE to wp26		NOE to wp2	56	2	10	var AS, var alt<25'	Alt, grnd track, roll, trim	
Auto stop Arrived at wp26		Arrived at wp	56				None	
Manual start/stop Hover		Hover		1		10 ft alt, 360° hdg	Alt, drift, hdg	
Manual start/stop (360°)		Hover turn (360°)		1		10 ft alt	Alt, drift, turn rate	
Manual start Contour to wp27		Contour to wp	720	2.5	6	var AS, const alt	Alt, grnd track, roll, trim	Admin Moods/Symptoms
Auto stop/start Contour to wp28		Contour to w	p28	3	12.5	var AS, const alt	Alt, grnd track, roll, trim	
Contour to wp	Contour to v	Contour to v	φ	3.5	13.5		Alt, grnd track, roll, trim	
Auto stop Arrived at wp29 Ascend to 2k'		Arrived at w	529 2K'	4			None	Cue Co-pilot to prepare for MATB
Manual start/stop S&L		S&L		1		120kts;2k;090°	AS, alt, trim, roll, hdg	Cue Co-pilot to begin MATB
Manual start/stop RSRT		RSRT		2		360°	AS, alt, frim, roll, turn rate	

Table A-2 (continued).
MEDEVAC scenario.

						ŧ	ot at		smc		ATB	Ē						
Notes						Administer TLX to pilot	Admin TLX to Co-pilot at end of MATB		Admin Mood/Symptoms		Cue Co-pilot to for MATB prepare	Cue Co-pilot to begin MATB						
Variables to score	AS, all. frim, roll, hdg	AS, tem, roll, turn rate, ascent rate	AS, alt, trim, roll, hdg	AS trim, roll, turn rate, descent rate	AS, all, trim, roll, hdg	AS, trim, roll, hdg, descent	Alt, grnd track, roll, trim	Alt, grnd track, roll, trim	Alt,grnd track,roll,trim	Alt,grnd track,roll ,trim	Alt, grnd track, roll, trim	AS, alf, trim, roll, hdg	AS, all, frim, roll, turn rate	AS, alt, trim, roll, hdg	AS, trim, roll, turn rate, ascent rate	AS, alt, trim, roll, hdg	AS, frim, roll, turn rate, descent rate	AS, alt. frim, roll, hdg
Standards	120kts,2k',090°	2 OK +2 5K	120Kts,2.5K,270°	Z.5k → 2k	120kts, 2.0kt, 090*	120kts, 2.0-> 1.0K; 090"	var AS, const alt	var AS, var alt<25	var AS, const alt	var AS, const alt	var AS, const alt	120kts,2k',090°	360*	120kts,2k,90°	2.0k→2.5k′	120kts, 2, 5k', 270°	2.5k ± 2k	120kts,2.0kr.090°
Æ							4	16.6	28.2	33.1								
Mins	-	+	1	1	-	2	1	4.5	7.5	6	4	1	2	+	1	1	-	-
Maneuver	188	L, 180°, 15RT	S&L	L. 180* JSRT	198	Descend then go to wp 30	Contour to wp31	NOE to wp32	Contour to wp33	Contour to wp34	Arrive wp 34 Ascend to 2k'	S&L	RSRT	S&L	L. 180°, ÎSRT	S&L	L. 180°, ‡SRT	S&L
Action	Manual start/stop	Manual start/stop	Manual start/stop	Manual startistop	Manual start/stop	Manual start/stop	Auto start	Auto stop/start	Auto stop/start	Auto stop/start	Auto stop	Manual star/stop Trim off	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop	Manual start/stop
WP	29+	78 +	29+	÷ 88	5 8	29+	30	31	32	33	34	34+	34+	ġ	\$	ŧ	34+	*#E
Man	32	33	ğ	35	38	37	38	39	6	4		42	4	3	45	\$	47	48
Time	£ 83	69.3	703	713	72.3	743	75.3	79.8	87.3	96.3	100.3	101.3	103.3	104.3	105,3	106.3	107.3	1083

Table A-2 (continued)...
MEDEVAC scenario.

Time	Man	WP	Action	Maneuver	Mins	Km	Standards	Variables to score	Notes
1093	49	34+	Manual start/stop Trim on	Descend then go to wp35	1		120kts, 2, 0 -> 1, 0k; 090*	AS, trim, roll, hdg, descent rate	Administer TLX to pilot
112.3	50	35	Auto start	Contour to wp36	က	12.5	var AS, const alt	Alt, grnd track, roll, trim	Admin TLX to Co-pilot at end of MATB
116.3	51	36	Auto stop/start	NOE to wp18	4	6.5	var AS, var alt<25	Alt, grnd track, roll, trim	
		18	Auto stop	Arrived at wp18				None	
117.3	52	18	Manual start/stop	Hover	1		10 ft alt, 360 hdg	Alt, drift, hdg	
118.3	53	18	Manual start/stop	Hover turn (360°)	1		10 ft alt	Alt, drift, turn rate	Admin Mood/Symptoms when maneuver complete
				Total	118.3				

Appendix B. Test subject demographics.

Table B-1. Demographics.

WYSK BYST KEYR (HKS) NBC ONEKCYKWENT YND	_	0	1	0	1	0	_	2	3	0	0	0	0	
TOJIY AOTAJUME 08-HU RSJOH	100	8	40	8	2	6	45	06	40	0	20	160	300	150
UH-60 PILOT FLIGHT HOURS	200	40	300	0	0	_ 12	530	540	120	0	25	1800	1500	200
TOTAL FLIGHT HOURS AS A PILOT	1100	2800	2200	320	1750	200	\$69	- 089	4000	1500	450	2300	1800	009
ADDITIONAL AVIATOR QUALIFICATIONS	FW MULTI-ENGINE	UH-1, OH-58	N/A	NA	N/A	NA	V/A	NA	SEL PRIVATE PILOT	P, NVG IP	HI·HO	NA	MTP ALL THREE A/C	MEDEVAC
WHAT AIRCRAFT ARE YOU RATED IN	UH-1, UH-60	UH-60	UH-1, OH-58, TH-55, AH-1, UH-60	UH-1, OH-S8	UH-1 H & M, AH-1	UH-1, UH-60	UH-60, UH-1	UH-60, UH-1	TH-55, UH-1, OH-58, UH-60	AH-1, OH-58, UH-1	153D, UH-60A	UH:60, UH:1	UH-60, UH-1, OH-58	09-НО, ПН-Ю
ALUDIES TEST SUBJECT IN OTHER HAVE YOU EVER BEEN A	YES	ON	NO	NO	NO	ON	ON	ON	NO	NO	YES	ON	YES	YES
сеирек	FEMALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	MALE	FEMALE	MALE	MALE	MALE
BVNK	MAJ	CW4	CW3	(LP	CW3	WOI	CW2	CW2	CW3	MAJ	CW2	CW3	CW3	CW2
Test Subjects	1	2	3	4	5	9	7	8	6	10	11	12	13	14

Table B-1. (continued) Demographics.

	_		_	-	_		,	1		,	_			
FOTAL HRS TRAINING IN	d =) 0	3		0	0		0.	9	0	3	0	0	
MEEK bhasicyt lbyining deb lolyt honbs ob	ď ~		4	9	3	4	3	3	2	6	10.5	3	5	4.5
MEEK KON DO LL HOM WYNK LIWES LEB			4	9	3	4	3	3	2	3	7	3	5	3
100%) WYXIWNW EEEOKT (0- LECENTYCE OF PROPENTE OF	100	80	06	100	06	85	85	70	100	100	06	70	100	90
BUN TIME	19:00	16:30	14:30	12:10	18:35	1430	16:24	15:38	15:10	14:20	17:30	14:10	13:20	15:00
SAUTIS	65	30	55	92	31	88	47	45	56	- 80	18	64	80	70
PUSHUPS	35	30	55	L9	37	92	20	40	46	75	48	75	80	. 09
MOST RECENT PT TEST	96/1/9	10/1/95	11/1/95	12/15/95	4/13/96	96/1/£	4/1/96	2/1/96	2/1/96	5/10/96	4/1/96	7/1/96	11/1/95	4/1/96
MEICHL (FOUNDS)	134	170	155	175	192	170	190	198	178	175	142	165	175	155
неісні (іиснег)	29	0.	69	η	89	71	74	T I	72	L	65	19	89	70
V GE	36	49	33	29	50	28	31	32	32	44	32	34	41	27
MASK PAST 5 YEARS (HRS) UBC OVERGARMENT AND	0	0	5		7	0	3	8	18	4	5	4	52	\$
Test Subjects	-	2	3	4	5	9	7	8	6	01	11	12	13	14

Appendix C. Flight performance tables.

<u>Table C-1.</u>
Three-way ANOVA for flight performance: ACS scores.

p-levei	.12505038 02.1434011 5.958 - 28 01.415962 40672061 52411926 87712443
ш	6 14.5303831 3.17510462 0.12505038 6 35.27/14411 9153767395 0002/43401 42 38:57/2357 155 95723 5.948E128 6 19:8358612 111/690/493 0001418962 42 18:3728714 1.05826294 0.40672061 42 21.1050053 0.88838476 0.52411926 42 19:697401 0.43113554 0.87712443
MS Error	6 14.5303831 6 35.27/14411 (2.33.57/12357 6 19/8358612 12 18.3728714 12 21.1050053 12 19.697401
df Error	4 4 4
MS Effect	46.1354866 336.404663 5235.67676 231.884186 19.4433289 18.7493668 8.49224949
df Effect	
	Temperature Uniform Maneuver Temperature and Uniform Temperature and Maneuver Uniform and Maneuver

<u>Table C-2.</u>
MANOVA for flight performance using average scores.
Summary of all effects for all variables taken simultaneously

Manova for Flight Performance: Scores-Left Descending Turn	Effect Wilks: Lambda Rac's R df 1 df 2 p-level Temperature 0.01701 34,6761 5 3 0.0074 Uniform 0.00773 76,9974 5 3 0.0073	Manova for Flight Performance: Scores-NOE	Effect Wilks' Lambda Rao's R df 1 df 2 p-lavel Temperature 0.01408 56.0378 5 4 0.0009 Uniform 0.01188 66.5235 5 4 0.0006 Temperature and Uniform 0.01551 50.7665 5 4 0.0010	Manova for Flight Performance: Scores-RSRT	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.05033 11/3202 5 3 0.0365 Uniform 0.08533 6.4152 5 3 0.0785 Temperature and Uniform 0.00518 1.15.2969 5 3 0.0013	Manova for Flight Performance: Scores-Straight & Level	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.01786 18.2218 6 2 0.0529 Uniform 0.02820 11.4884 6 2 0.0019 Temperature and Uniform 0.02820 11.4884 6 2 0.0822
Manova for Flight Performance: Scores-Contour	Effect Wilks' Lambda Rack R df1 p-level Temperature 0.01537 51.2590 5 4 0.0010 Uniform 0.02958 26.2477 5 4 0.0037 Temperature and Uniform 0.01110 71.2875 5 4 0.0005	Manova for Flight Performance: Scores-Hover Turn	Effect Wilks* Lambda Rac's R df 1 df 2 p-level Temperature 0.00237 841.7723 5 0.0000 Uniform 0.00194 1026.4421 3 5 0.0000 Temperature and Uniform 0.00323 616.8964 3 6 0.0000	Manova for Flight Performance: Scores-Hover	Effect Wilks' Lambda Rac's R df 1 df 2 p-level Temperature 0.16455 10.1546 3 6 0.0091 Uniform 0.09645 18,7364 3 6 0.0019 Temperature and Uniform 0.23414 6.5421 6 0.0255	Manova for Flight Performance: Scores-Left Climbing Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0,00734 81,1446 5 3 0,0021 Uniform 0,01412 41,8841 5 3 0,0056 Temperature and Uniform 0,00193 310,9716 5 3 0,0003

<u>Table C-3.</u> MANOVA for flight performance using the average maximum scores.

Summary of all effects for all variables taken simultaneously

Manova for Flight Performance: Max Scores-Left Descending Turn	Effect Wilks' Lambda Rao's R df 1 df 2 D-level Temperature and Uniform 0.24794 3.0332 4 4 0.1539 Temperature and Uniform 0.24873 3.0204 4 4 0.1548	Manova for Flight Performance: Max Scores-NOE	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00099 1262.4877 4 5 0.0000 Uniform 0.02483 49.0893 4 5 0.0003 Temperature and Uniform 0.02119 57.7325 4 5 0.0002	Manova for Flight Performance: Max Scores-RSRT	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00006 27702.8621 3 5 0.0000 Uniform 0.00007 24887.3125 3 5 0.0000 Temperature and Uniform 0.00008 21544,9570 3 5 0.0000	Manova for Flight Performance: Max Scores-Straight & Level	Effect Wilks* Lambda Rao's R df1 df2 p-level Temperature 0.00001 61941.0156 5 3 0.0000 Uniform 0.00001 41145.5156 5 3 0.0000 Temperature and Uniform 0.00002 32336.3105 5 3 0.0000
Manova for Flight Performance: Max Scores-Contour	Effect Wilks*Lambda Rao's R df1 p-level Temperature 0.00293 425.8351 4 5 0.0000 Uniform 0.07325 15.8157 4 5 0.0048 Temperature and Uniform 0.04652 25.6188 4 5 0.0016	Manova for Flight Performance: Max Scores-Hover Turn	Effect Wilks' Lambda Rao's R df1 df2 p-level Temperature 0.00648 408.3405 2 7 0.0000 Uniform 0.85662 0.8568 2 7 0.5000 Temperature and Uniform 0.72632 1.3188 2 7 0.3265	Manova for Flight Performance: Max Scores-Hover	Effect Wilks* Lambda Rao's R df1 df2 p-level Temperature 0.01327 260.2046 2.7 0.0000 Uniform 0.51294 3.3235 2 7 0.0967 Temperature and Uniform 0.57646 2.5715 2 7 0.1454	Manova for Flight Performance: Max Scores-Left Climbing Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00209 478.4815 4 4 0.0000 Uniform 0.00122 815.6205 4 4 0.0000 Temperature and Uniform 0.00207 481.6010 4 0.0000

<u>Table C.4.</u>
MANOVA for flight performance using the average minimum scores.

Summary of all effects for all variables taken simultaneously

Manova for Flight Performance: Min Scores-Left Descending Turn	Effect Wilks' Lambda Rao's R df.1 df.2 p-level Temperature 0.00887 */14/3704 4 4 0.0002 Uniform 0.00981 58.7030 4 4 0.0008 Temperature and Uniform 0.00081 */15/1874 4 0.0002	Manova for Flight Performance: Min Scores-NOE	Effect Wilks' Lambda Rao's R df 1 p-layel Temperature 0.00007 16766.7441 4 5 0.0000 Uniform 0.00060 2095.5991 4 5 0.0000 Temperature and Uniform 0.00040 3097.7803 4 5 0.0000	Manova for Flight Performance: Min Scores-RSRT	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00002 93536.8872 3 5 0.0000 Uniform 0.00002 101909.7856 3 5 0.0000 Temperature and Uniform 0.00001 152210.5156 3 5 0.0000	Manova for Flight Performance: Min Scores-Straight & Level	Effect Wilks' Lambda Rao's R df.1 df.2 p-layej Temperature 0.00000 238378.9633 4 4 0.0000 Uniform 0.00001 76238.8750 4 4 0.0000 Temperature and Uniform 152284.5313 4 4 0.0000
Manova for Flight Performance: Min Scores-Contour	Effect Wilks' Lambda Rao's R df 1 p-level Temperature 0.00084 1332.4218 4 5 0.0000 Uniform 0.00459 271.2743 4 5 0.0000 Temperature and Uniform 0.00324 384.1965 4 5 0.0000	Manova for Flight Performance: Min Scores-Hover Turn	Effect Wilks Lambda Rao's R df 1 df 2 p-level Temperature 0.00130 2679.0864 2 7 0.0000 Uniform 0.78659 0.3466 2 7 0.4316 Temperature and Uniform 0.82520 0.7414 2 7 0.5105	Manova for Flight Performance: Min Scores-Hover	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.58043 2.5300 2 7 0.1490 Uniform 0.78183 0.9767 2 7 0.4226 Temperature and Uniform 0.79181 0.9203 2 7 0.4417	Manova for Flight Performance: Min Scores-Left Climbing Turn	Effect Wilks* Lambda Rao's R df1 df2 p-level Temperature 0.08544 10.7043 4 4 0.0207 Uniform 0.52492 0.9054 4 4 0.5372 Temperature and Uniform 0.08056 41.4126 4 4 0.0184

<u>Table C-5.</u>
MANOVA for flight performance using means from the average statistics.
Summary of all effects for all variables taken simultaneously

Manova for Flight Performance: Statistics-Left Descending Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00076 1311.5732 4 6.0000 Uniform 0.00043 411.3374 4 0.0000 Temperature and Uniform 0.00076 1312.8890 4 4 0.0000	Manova for Flight Performance: Statistics-NOE	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00029 4384.5537 4 5 0.0000 Uniform 0.00183 646.9161 4 5 0.0000	Manova for Flight Performance: Statistics-RSRT	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00002 76945.7891 3 5 0.0000 Uniform 0.00002 77244.6719 3 5 0.0000 Temperature and Uniform 0.00002 96795.2422 3 5 0.0000	Manova for Flight Performance: Statistics-Straight & Level	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.00002 50548.2188 4 4 0.0000 Uniform 0.00004 2.2879.2070 4 4 0.0000 Temperature and Uniform 0.00003 30664.5781 4 4 0.0000
Manova for Flight Performance: Statistics-Contour	Effect Wilks* Lambda Rao's R df1 df2 p-level Temperature 0.00075 1676.3248 4 5 0.0000 Uniform 0.24895 3.8118 4 5 0.0874 Temperature and Uniform 0.24388 3.8754 4 5 0.0849	Manova for Flight Performance: Statistics-Hover Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature and Uniform 0.00096 3835,7266 2 7 0.0000 Temperature and Uniform 0.0445 0.3698 2 7 0.7036	Manova for Flight Performance: Statistics-Hover	Effect Wilks' Lambda Rao's R df.1 df.2 p-level Temperature 0.02883 118.7313 2 7 0.0000 Uniform 0.85193 0.6083 2 7 0.5707 Temperature and Uniform 0.86422 0.5499 2 7 0.6000	Manova for Flight Performance: Statistics-Left Climbing Turn	Effect Wilks* Lambda Rao's R act df 2 p-level Temperature 0.00276 358,3568 4 0.0000 Uniform 0.00081 1,241,1550 4 0.0000 Temperature and Uniform 0.00088 349,1764 4 0.00000

<u>Table C.6.</u>
MANOVA for flight performance using means from the standard deviation statistics.
Summary of all effects for all variables taken simultaneously

Manova for Flight Performance: Statistics-Left Descending Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.0375 25.6827 4 4 0.0041 Uniform 0.0374 25.8222 4 4 0.0040 Cemperature and Uniform 0.03729 25.8201 4 0.0041	Manova for Flight Performance: Statistics-NOE	Effect Wilks' Lambda Rao's R act df 1 p-level Temperature 0.0/1312 94.0164 4 5 0.0001 Uniform 0.0/1874 65.4556 4 5 0.0002 Temperature and Uniform 0.01529 80.5126 4 5 0.0001	Manova for Flight Performance: Statistics-RSRT	Effect Wilks* Lambda Rao's R df 1 df 2 p-level Temperature 0.02954 54,7464 3 5 0.0003 Temperature and Uniform 0.02922 55,3669 3 5 0.0004	Manova for Flight Performance: Statistics-Straight & Level	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.02868 33.8700 4 4 0.0024 Uniform 0.14188 6.0484 4 4 0.0547 Temperature and Uniform 0.19452 4.1409 4 4 0.0988
Manova for Flight Performance: Statistics-Contour	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature 0.01453 84.7627 4 5 0.0001 Uniform 0.03240 37.3255 4 5 0.0006 Temperature and Uniform 0.01479 83.2861 4 5 0.0001	Manova for Flight Performance: Statistics-Hover Turn	Effect Wilks' Lambda Rao's R df 1 df 2 p-level Temperature and Uniform 0.78071 0.8831 2 7 0.4812 Temperature and Uniform 0.81140 0.8135 2 7 0.4812	Manova for Flight Performance: Statistics-Hover	Effect Wilks' Lambda Rao's R df1 df2 p-level Temperature 0.08476 50.5471 2 7 0.0001 Uniform 0.53795 3.0062 2 7 0.1142 Temperature and Uniform 0.54218 2.9555 2 7 0.1174	Manova for Flight Performance: Statistics-Left Climbing Turn	Effect Wilks* Lambda Rao's R df1 p-level Temperature 0.01508 65.3085 4 4 0.0007 Uniform 0.01528 64.4585 4 4 0.0007 Temperature and Uniform 0.01488 65.7003 4 4 0.0007

<u>Table C-7.</u> Root mean squared error - Trim on and off.

			Paramete	er.				
MOPP0 - 70°F	alt	asp	cli	hde	ral	rol	slp	trn
CONTOUR	•	T :		3.18	49.15	3.31	0.63	· ·
NAP OF EARTH	•	•		5.33	38.78	4.88	0.72	•
HOVER	•	•		1,68	1.46	1.00		
HOVER TURN	•		•	•	1.49			9.24
RIGHT STANDARD RATE TURN	32.17	2.31		•	•	3.45		0.52
STRAIGHT AND LEVEL	40.64	2.39		1.67	·	2.02	0.34	0.52
LEFT CLIMBING TURN	•	3,41	251.58	•		•	1.00	1.00
LEFT DESCENDING TURN	•	2.80	233.28	•	· · · · · · · · · · · · · · · · · · ·		0.75	1,20
				·		1	<u> </u>	1,25
MOPP4 - 70°F	alt	asp	cli	hde	ral	rol	slp	trn
CONTOUR	•	•		3.18	50.11	2.76	0.57	•
NAP OF EARTH	•	•	•	5.60	41.08	4.61	0,71	
HOVER	<u> </u>	•	•	1.83	2.03		•	
HOVER TURN	·	•	•	•	1.92		•	9.43
RIGHT STANDARD RATE TURN	34.70	2.31	<u> </u>	<u> </u>	•	3.41	•	0.53
STRAIGHT AND LEVEL	44.38	2.73	•	1.83	•	2.05	0.52	•
LEFT CLIMBING TURN		3.44	246.98	•	•	<u> </u>	1.14	1.00
LEFT DESCENDING TURN	•	3.34	256.00	<u> </u>	•	<u> </u>	0.72	1.09
MODDO 4000°	~1 4		_ **					
MOPP0 - 100°F	alt .	asp •	cli	hde	ral	rol	slp	trn
CONTOUR		:	•	3.04	46.07	2.93	0.58	•
NAP OF EARTH			•	4.15	39.42	4.81	0.71	•
HOVER	├	:	- : -	1.43	1.40	•	•	•
HOVER TURN RIGHT STANDARD RATE TURN			<u> </u>	•	1.41	•	•	9.37
STRAIGHT AND LEVEL	35.80	2.27	- :		•	3.70	•	0.64
LEFT CLIMBING TURN	34.81	2.42		1.63	•	2.06	0.30	•
LEFT DESCENDING TURN		3.20 2.86	234.87 232.86	•	•	•	0.98	1.03
EL I DESCENDING TORN	L.,	2.00	232.86				0.75	1.02
MOPP4 - 100°F	alt	asp	cli	hde	ral	roi	sip	trn
CONTOUR	•			5.22	49.90	3.65	0.56	•
NAP OF EARTH			•	5.29	53.29	5.01	0.67	•
HOVER	•	•	•	1.67	2.72	3.01	0.67	•
HOVER TURN		•	•	*	1.91	•		9.98
IGHT STANDARD RATE TURN	59.72	2.85	•	•	•	4.59	•	0.77
STRAIGHT AND LEVEL	55.19	3.44	•	2.32	•	2.56	0.63	•
LEFT CLIMBING TURN		4.32	290.19		•	•	1.14	1.09
LEFT DESCENDING TURN		4.18	310.89	•	•		0.93	1.06

<u>Table C-8.</u> Root mean squared error. Trim off.

			Parame	eter			
MOPP0 - 70°F	alt	asp	cli	hde	rol	sip	trn
RIGHT STANDARD RATE TURN	38.66	2.72	*	•	3.81	•	0.69
STRAIGHT AND LEVEL	53.53	2.91	•	1.75	2.56	0.53	
LEFT CLIMBING TURN	•	3.91	294.97	•	•	1.16	1.00
LEFT DESCENDING TURN	•	3.34	281.06	•		1.34	1.22
MOPP4 - 70°F	alt	asp	cli	hde	rol	slp	trn
RIGHT STANDARD RATE TURN	43.38	2.88	•		3.63	•	0.59
STRAIGHT AND LEVEL	59.31	3.16	•	2.06	2.66	0.94	*
LEFT CLIMBING TURN	•	4.09	306.34		*	1.41	1.03
LEFT DESCENDING TURN	•	4.47	332.22	•	•	1.34	1.19
MOPP0 - 100°F	alt	asp	cli	hde	rol	slp	trn
RIGHT STANDARD RATE TURN	43.13	2.52	•	•	4.62	•	0.76
STRAIGHT AND LEVEL	43.34	2.94	•	1.66	2.69	0.47	•
LEFT CLIMBING TURN	•	3.88	290.69	•	•	1.09	1.03
LEFT DESCENDING TURN		3.44	293.38		•	1.41	1.09
MOPP4 - 100°F	alt	asp	cli	hde	rol	slp	trn
RIGHT STANDARD RATE TURN	83.31	3.88	•	*	5.06	•	0.81
STRAIGHT AND LEVEL	60.25	4.06	•	2.56	3.69	1.13	•
LEFT CLIMBING TURN		5.94	374.06	•	•	1.38	1.13
		6.25	420.19			1.75	1.25

<u>Table C-9.</u> Root mean squared error - Trim on.

			Para	ameter				
MOPP0 - 70°F	alt	asp	cli	hde	rai	rol	slp	trn
CONTOUR	*		*	3.18	49.15	3.31	0.63	
NAP OF EARTH		*	•	5.33	38.78	4.88	0.72	
HOVER		•	*	1.58	1.33			
HOVER TURN	•	*			1.50		*	9.33
RIGHT STANDARD RATE TURN	25.69	1.91			*	3.09		0.34
STRAIGHT AND LEVEL	27.75	1.88		1.59	*	1.47	0.16	•
LEFT CLIMBING TURN	•	2.91	208.19		*	*	0.84	1.00
LEFT DESCENDING TURN	+	2.25	185.50	*		*	0.16	1.19
MOPP4 - 70°F	alt	asp	cli	hde	rai	rol	slp	trn
CONTOUR	•	.	<u> </u>	3.18	50,11	2.76	0.57	
NAP OF EARTH	•	*	*	5.60	41.08	4.61	0.71	
HOVER	*		*	1.69	2.22	*	*	
HOVER TURN	*	*		*	2.00		*	9.39
RIGHT STANDARD RATE TURN	26.03	1.75		*	*	3.19	*	0.47
STRAIGHT AND LEVEL	29.44	2.31	*	1.59	*	1,44	0.09	*
LEFT CLIMBING TURN		2.78	187.63				0.88	0.97
LEFT DESCENDING TURN	•	2.22	179.78	*	*	•	0.09	1.00
	•				L	<u> </u>	1	1
MOPP0 - 100°F	alt	asp	cli	hde	ral	roi	slp	trn
CONTOUR	•	*	*	3.04	46.07	2.93	0.58	*
NAP OF EARTH	*	*	*	4.15	39.42	4.81	0.71	*
HOVER	*	*	•	1.50	1.39	•	<u> </u>	*
HOVER TURN	*	*	*	*	1.33	*	*	9.36
RIGHT STANDARD RATE TURN	27.00	1.53	*	*	•	3.53	*	0.56
STRAIGHT AND LEVEL	26.28	1.91	*	1.59	*	1.44	0.13	•
LEFT CLIMBING TURN	*	2.53	177.53	*		*	0.88	1.03
LEFT DESCENDING TURN	•	2.28	172.34	*	*	*	0.09	0.94
MOPP4 - 100°F	alt	asp	cli	hde	ral	rol	slp	trn
CONTOUR	•	•	•	5.22	49.90	3.65	0.56	*
NAP OF EARTH	•	*	*	5.29	53.29	5.01	0.67	*
HOVER	*	*	*	1.67	2.89	•	*	
HOVER TURN	*	*		*	2.28	*	*	10.22
IGHT STANDARD RATE TURN	36.13	1.88	*	*		4.13	*	0.75
STRAIGHT AND LEVEL	48.13	2.81	•	2.06	*	1.69	0.19	*
LEFT CLIMBING TURN	*	2.75	214.44	*	*	*	0.88	1.06

* Root Mean Squared Error not determined for these parameters

<u>Table C-10.</u> ANOVA results for flight performance maximums and minimums - Trim on and off.

	INTERACTION PATIBE Y INFORM	F VALUE P VALUE	0.3570	0.1676	,,,,,	0.5499	0.2425	0,0188	0.3765	0.9622	9034.0	0.2551	0.0842	0.2005	0.1073	0.8357	0.0693	0.7970	0+70.0	0.7946	0.3145		INTERACTION	F VALUE P VALUE	0.0779	0.2457	0.6724	0.9518	0.5584	0.2348	0.5289	0.5758	0.2369	0.6911	0.3398	0.4595	0.7628	0.6789	0.1360	0.5841	0.1788	0.5109
	INTER	F VALUE	96'0	2.30	or c	0.39	1.59	9.26	69.0	0.00	0.44	1.54	4.04	2:00	3.41	0.05	4.39	0.07	07.	0.07	1.15	į	INTE	FVALUE	4.08	1.57	0.19	00:0	0,38 5.51	1 7.1	0.44	0.34	1.67	0.17	1.05	0.61	0.10	0.19	2.75	0.33	2.17	0.47
	na Ca	UE PVALUE	0.6941	0.5162	0.4073	0.9908	6,8211	12780	0.0758	6,0346	0.7760	0,0063	0,0026	0.6310	0.0136	6.8370	0.2569	0.8595	0.1023	0,0146	0.0494	Ind OFF	100	UE P VALUE	-	80700	0.4836	0.4713	0.0562	1 0 9933	0.0993	0.7110	0.1211	0.6107	0.6622	0.7868	0.2851	0.4698	0.3173	0.8812	0.0812	0.2267
ON and OFF	MAIN EFFECTS	FVALUE	0.17	0.46	;;	0.00	8.18	5.75	7 5	6.85	90 0	14.77	20.90	7.24	10.75	6.61	1.49	0.03	O. P.	996	5.35	S - TRIM ON 8	MAIN EFFECTS	FVALUE	25.84	5.94	0.54	0.58	5.22	800	3.61	0.15	3,11	0.28	0.21	90.0	1.34	0.58	1.14	0.02	3.98	1.72
VIMUMS - TRIP	MAIN E	PVALUE	0.2160	0.5615	0.2870	0.5123	0.2786	0,3082	0.1753	0.1244	0.6943	0,0221	0.1968	0.3847	0,0369	0.2862	0.0567	0.9898	165.0	0.5681	0.6742	ICS MAXIMUM	MAIN	ALUE P VALUE		0.2154	0.9868	0.3122	0.2732	0.6456	0.6478	0.4869	0,5777	0.7993	0.5514	0.4189	0.2579	0.3326	0.4872	0.6792	0.0027	0.4879
ORMANCE MII	TENDE	7	1.81	0.37		0.47	1.35	1.21	227	3.05		8.39	2.03	98'0	6.62	1.33	4.95	00:0	C.	0.35	0.19	NCE STATIST		7		181	0.00	1.19	1.94	623	0.23	35.0	0.34	0.07	0.39	0.74	1.52	1.08	0.53	0.18	18.18	0 53
R FLIGHT PERF		MOPP4, 100*F	13.26	7.76	CF CF07	0.15	115.30	112.40	4.74	1.17	36 2870	113.90	-7.11	113.26	5.19	-1.89	29.17	-14.53	7 6.1-	37.78	-11.65	HT PERFORMA	:	MOPP4, 100*F		13.89	-0.69	2058.76	125.68	121 93	-0.10	988.24	2588.63	123.24	0.19	122.90	173.44	0.14	131.07	1,41	200.26	10.03
A RESULTS FO	MANEUVER	ABDU, 100°F	28.51	7.65	50 2201	0.31	116.86	114.63	4.30	-1.52	2487 30	116.41	-4.05	116.23	4.39	-1.55	18.18	-15.31	11.5.	32.19	-11.96	ULTS FOR FLIG	MANEUVER	ABDU, 100°F	12.21	12.17	-0.32	2050.50	3.98	120 70	0.13	0.00	2555.30	122.72	0.22	123.22	-0.19	0.05	153.14	1.49	228.79	10.22
REPEATED MEASURES ANOVA RESULTS FOR FLIGHT PERFORMANCE MINIMUMS - TRIM ON and OFF	ULATOR FLIGHT PERFORMANCE VALUES BY MANEUVER	MOPP4, 70°F	45.48	7.62	4050 00	0.48	116.51	113.95	4.25	-1.66	24.67.43	115.77	-5.00	115.16	4.33	-1.70	16.43	-14.97	10.2-	35.49	-10.13	REPEATED MEASURES ANOVA RESULTS FOR FLIGHT PERFORMANCE STATISTICS MAXIMUMS - TRIM ON and OFF	MULATOR FLIGHT PERFORMANCE VALUES BY MANEUVER	MOPP4, 70°F	13.43	12.71	-0.57	2049.09	3.78	122 95	-0.09	-0.05	2569.03	123.08	0.28	123.75	0.08	0.17	146,10	1.44	236.13	+0.11
REPEATED M	HT PERFORMAN	ABDU, 70°F	39.78	8.08 -11.08	64 0404	0.31	116.96	113.92	4.16	-1.39	2463 73	116.20	4.44	115.59	4.31	-1.41	17.39	-14.82	60.2-	31.83	-1.90	PEATED MEASUR	SHT PERFORMAN	ABDU, 70°F	12.43	12.16	-0.44	2041.73	3.91	129 17	0.02	-0.08	2566.23	123,11	0.20	123.16	73.67	0.14	148.22	1.31	241.93	11 70
	JLATOR FLIG	NUM TSs	6	6	ı,		6	6	6 0	, 6	۰	. 6	8	6	6 0	n 0	6	6 6	Ì	6	n 6	REF	ULATOR FLIG	NUM TSs	6	6	6	6	a o	6	6	5 6	6	6	6	6	6 6	6	6	6	6	
	MEAN SIM	PARAMETER	AVG RADAR ALT	AVG ROT	±14 0/14	AVG ROT	AVG_ASP	AVG ASP	AVG ROT	AVG_SLP	TIV ON	AVG ASP	AVG_ROLL	AVG_ASP	AVG ROT	AVG_SLP	AVG RALT	AVG ROLL	אמ פרע	AVG_RALT	AVG_SLP		MEAN SIM	PARAMETER	AVG RADAR ALT	AVG RALT	AVG ROT	AVG_ALT	AVG_ASP	AVG ASP	AVG ROT	AVG_ROC AVG_SLP	AVG ALT	AVG ASP	AVG SLP	AVG ASP	AVG ROT	AVG SLP	AVG RALT	AVG SLP	AVG_RALT	AVG ROLL
		MANEUVER PARAMETER	ЛОН	HOVT	Tood	Non		LCT			ā	5		LDT			NOE			CONTOUR				MANEUVER		HOVT		RSRT		13			S			נסד			NOE		CONTOUR	

<u>Table C-11.</u>
ANOVA results for flight performance maximums and minimums - Trim on.

	MEAN	MEAN SIMULATOR FLIGHT PERFORMAN	HT PERFORMANCE	CE SCORES BY MANEUVER	UVER		TEMPE	MAIN E	MAIN EFFECTS	Adoptivi	INTER	ACTION
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	FVALUE	P VALUE	FVALUE	P VALUE	FVALUE	F VALUE P VALUE
ноу	AVG RADAR ALT	8	330.08	300.42	300.33	359.89	2.02	0.1927	2.02	0.1927	2.58	0.1468
HOVT	AVG RALT	6	12.00	13.03	11.89	14.78	4.30	0.0719	23.56	6.0813	363	6383
	AVG ROI	8	-0.33	-0.53	-0.03	-0.89	000	0.9484	1.59	0.2424	0.67	0.4361
RSRT	AVG ALT	6	2028.41	2026.84	2032.72	2040.06	1.23	0.3041	0.53	0.4890	K:0	0.5758
	AVG ASP	8	123.69	123.78	123.34	3.75	0.12	0.7397	10.0	0.9262	332	0.1112
ICT	AVG_ASP	6	121.81	12194	121.75	32555	730	0,00			800	0.7719
	AVG ROT	œ (0.28	-0.13	0.19	000	100	0.8335	3.77	0.0934	0.71	0.4260
	AVG_SLP	B B	0.03	737.34	722.94	962.56	0.75	0.4159	58	0.200	3.13	0.1204
i	211 077					000	8.1	0.3508	1.80	0.3508	0.18	0.6845
100	AVG ASP		2545.03	2544.47	2541.50	2570.50	1.52	8952.0	1.85	0.2158	2.03	0.1968
	AVG_ROLL	6	3.44	4.13	4.34	3.81	0.13	0.9625	0.50	5.00.2	300	0.4500
	AVG_SLP	6	0.28	0.31	0.31	0.00	7.99	0.0254	5.50	0.0514	8.92	0.0203
tor	AVG ASP	6	121.91	121.84	121.69	122.19	0.14	0.7220	90.0	0,6278	8	5000
	AVG BOC	6	000	-0.16	90.0	-0.13	0.01	0.9269	0.43	0.5313	100	0,7964
	AVG_SLP	0	334	-37.03	-46.50	12.50	0.00	0.9951	0.17	0.6890	184	0.0638
BON	2.100 0777					61.0	0.57	0.4756	0.50	0.5029	0.92	0.3703
Š	AVG ROLL	5 0	16822	146.10	153.14	131.07	0.53	0.4872	1.14	0.3173	2.75	0.1360
	AVG_SLP	9	1.31	1.44	1.49	1.41	0.18	0.6792	11.97	\$,0066 0.8832	0.4	0.0774
CONTOUR	AVG HDG	ō	9,63	55.057						71000	8.0	0.0041
	AVG_RALT		241.93	236.13	228.79	152.18	0.17	0.6332	980	0.3586	0.84	0.3864
	AVG ROLL	6	11.79	10.11	10.22	10.03	0.53	0.4879	1.72	0.2267	0.47	0.5109
			1.28	1.07	1.28	1.20	0.24	0.6369	1.74	0.2236	0.94	0.3604
				REPEATED MEASI	JRES ANOVA RES	REPEATED MEASURES ANOVA RESULTS FOR FLIGHT PERFORMANCE MINIMUMS. TRIM ON	ERFORMANCE MIN	HMUMS-TRIM ON				
	MEAN	MEAN SIMULATOR FLIGHT PERFORMAN		SE VALUES BY MANEUVER	IVER			MAINE	MAIN EFFECTS		INTER	ACTION
MANEUVER	PARAMETER	NUM TS8	ABDU, 70°F	MOPP4, 70°F	ABDU. 100°F	MOPPA 100°E	E VALUE DA	VATURE	INO	UNIFORM	TEMPERATU	TEMPERATURE X UNIFORM
A OF	The State Offi	ļ					7070	TOWN.	LANCOE	FVALUE	r VALUE	P VALUE
AGU	AVG RADAKALI	P	49.69	19.94	20.11	19.89	0.66	0.4398	0.40	0.5434	0.98	0.35
HOVT	AVG RALT	6	187	7.56	7.58	7.94	00:0	0.9486	00'0	0.9686	2.49	0.15
	low ove		-11./5	.11.50	-11.22	-11.83	0.05	0.8333	0.10	0.7628	1:00	0.35
RSRT	AVG ALT	6	1933.41	1946.22	1954.19	1872.08	1.01	0.3487	1.58	0.2497	3.01	0.13
	AVG_ASP	8	116.41	115.50	115.79	113.44	1.78	0.2237	95.0	0.4774	1.33	0.29
LCT	AVG ASP	8	\$43.68	35.013	80				800	BATAA	96.0	0.47
	AVG_ROT	6	17.4	16.4	4.59	5.08	3.76	0.3568	3.94	0.0875	454	20.0
	AVG ROC	. a	-135.31	-181.63	-161 22	-287.44	3	0.2410	2.08	0.1944	0.56	0.48
			000	16.2	W.Z.	-2.38	1.08	0.3307	7.84	0.0758	0.12	0.74
SL	AVG ALT	6 0	2479.00	2489.72	2484.03	2484.03	800	0.8662	2.19	0.1773	2.19	0.18
	AVG ROLL	6	-6.03	16.9	-6.13	-10.38	3.20	0.1168	202	0.0705	114	0.33
	AVG_SLP	9	-1.09	-1.44	-1.06	-1.88	0.50	0.5024	9.52	6.017T	2.12	0.19
TOT	AVG_ASP	6	114.66	113,69	115.72	110.31	0.48	05121	506	0,0507	9 1 10	
	AVG ROT	60 0	4.44	187	4.88	90.9	7.74	0.0272	8.91	0.0204	150	0.28
	AVG SLP	9	-2.06	-2.53	-915.03	-1047.19	336	0.3325	7.25	0.0310	0.12	0.74
NOF	AVG DALT	٠	50.25					200	0.31	D.C. COROLL	0.03	0.87
701	AVG ROLL	a 6	-14.82	16.43	18.18	-1453	8 6	0.0567	1.49	0.2569	4.39	0.07
	AVG_SLP	9	-2.03	-2.01	-2.17	-1.32	1.51	0.2541	3.40	0.1023	4.20	0.07
CONTOUR	AVG RALT	8	31.83	35.49	32.19	37.76	0.35	0.5681	996	97100	002	07.0
	AVG ROLL AVG SLP	6	12.57	-10.13	11.98	-1166	0.21	0.6562	2.32	0.1661	1.89	0.23
					£1.75.	3:1.	0.19	0.6742	5.35	0.0494	1.15	0.31

<u>Table C-12.</u>
ANOVA results for flight performance maximums and minimums - Trim off.

		REPEAT		ED MEASURES ANOVA RESULIS FOR FLIGHT PERFORMANCE STATISTICS MAXIMUMS - TRIM OFF								
	MEAN SIM	MEAN SIMULATOR FLIGHT		PERFORMANCE VALUES BY MANEUVER	Y MANEUVER		MAI	MAIN EFFECTS	FECTS	SUNIFORM	INTERACTION TEMPERATURE X LINIFORM	CTION X LINIFORM
MANEUVER	PARAMETER	NUM TS8	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	F VALUE	P VALUE	F VALUE	P VALUE	F VALUE	P VALUE
RSRT	AVG_ALT	6	2055.08	2071.34	2073.79	2079.25	0.82	0.3965	0.30	0.6036	0.29	0.8051
	AVG_ROT	6	4.09	4.03	3.96	4.25	0.17	0.6942	6.16	0,0421	2.34	0.1702
	AVG_ASP	6	125.00	124.84	124.01	127.81	1.79	0.2222	6.73	0,0357	14.43	工会 安徽 安全 四
LCT	AVG_ASP	6	122.53	124.16	123.69	121.50	0.38	0.5699	0.08	0.7867	3,94	0.0874
	AVG_ROT	6	-0.25	-0.06	0.03	-0.25	0.38	0.5674	90'0	99080	2.08	0.1929
	AVG_ROC	6	916.91	951.58	929.75	1122.69	8.74	0.0212	34.91	9000.0	4.07	0.0834
	AVG_SLP	6	-0.18	-0.19	-0.13	-0.13	0.25	0.6344	0.05	0.8264	0.01	0.9346
TS	AVG_ALT	6	2587.44	2593,59	2569.09	2603.75	0.51	0.4972	3.48	0.1045	0.37	0.5837
	AVG_ASP	6	124.08	124.41	123.91	124.13	0.25	0.6308	0.13	0.7283	0.01	0.9365
	AVG_ROLL	6	5.69	6.19	6.59	6.44	1.03	0.3445	0.02	0.8789	0.10	0.7604
	AVG_SLP	6	0.13	0.19	0.13	0.38	0.61	0.4598	1.58	0.2495	1.62	0.2443
LDT	AVG_ASP	6	124.41	125.58	124.75	124.06	0.33	0.5814	90'0	0.8073	0.88	0.3836
	AVG_ROT	6	-0.03	0.31	-0.18	00'0	43.	0.2549	1.33	0.2861	0.15	0.7136
	AVG_ROC	6	144.00	276.13	190.47	376.25	0.88	0.3794	8.49	EF 0.0228	0.13	0.7282
	AVG_SLP	6	-0.03	0.19	-0.09	0.00	1.00	0.3506	0.81	0.3969	0.20	0.6682
			REPEATED N	FEASURES ANOV	/A RESULTS FO	REPEATED MEASURES ANOVA RESULTS FOR FLIGHT PERFORMANCE MINIMUMS - TRIM OFF	RMANCE MI	NIMUMS - TI	RIM OFF			
	MEAN SIM	MEAN SIMULATOR FLIGHT		PERFORMANCE VALUES BY MANEUVER	Y MANEUVER			MAINE	MAIN EFFECTS		INTERACTION	CTION
							TEMPE	TEMPERATURE	UNIF	UNIFORM	TEMPERATURE X UNIFORM	E X UNIFORM
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	F VALUE	P VALUE	F VALUE	P VALUE	FVALUE	P VALUE
RSRT	AVG ALT	6	1933.41	1948 22	1954.19	1872.08	101	0.3487	1.58	0.2497	3.04	0.1285
	AVG_ROT	6	0.31	0.50	0.23	-0.44	1.78	0.2237	0.58	0.4774	1.33	0.2873
	AVG_ASP	6	116.41	115.50	115.79	113.44	2.63	0.1489	8.88	0.0205	0.58	0.4727
LCT	AVG_ASP	6	112.69	112.75	113.66	110.38	0.97	0.3566	3.94	0.0875	4.54	0.0706
	AVG_ROT	6	-4.44	-4.31	-4.59	-5.06	3.76	0.0938	0.41	0.5421	0.82	0.3945
	AVG_ROC	6	-135.31	-181.63	-161.22	-287.44	1 9.	0.2410	2.06	0.1944	2.06	0.1944
	AVG_SLP	6	-1.78	-2.31	-2.00	-2.38	1.09	0.3307	7.84	0.0265	0.12	0.7403
SF	AVG_ALT	6	2479.00	2489.72	2484.03	2484.03	00:0	0.9552	2.19	0.1773	2.19	0.1773
	AVG_ASP	6	115.78	115.66	116.41	113.13	2.62	0.1497	4.54	0.0705	1.11	0.3270
	AVG_ROLL	8	-6.03	-6.94	-6.13	-10.38	3.20	0.1168	5.07		1.42	0.2729
	AVG_SLP	6	-1.09	-1.44	-1.06	-1.88	0.50	0.5024	9.52	0.0177	2.12	0.1887
רסד	AVG_ASP	6	114.66	113.69	115.72	110.31	0.48	0.5121	5.06	0.0592	1.19	0.3113
	AVG_ROT	6	4.44	-4.81	4.88	90.9-	7.74	0.0272	8.91	0.0204	1.50	0.2598
	AVG_ROC	6	-905.22	-996.22	-915.03	-1047,19	1.08	0.3325	7.25	0.0310	0.12	0.7419
	AVG_SLP	8	-2.08	-2.53	-2.41	-2.94	3.36	0.1095	6.31	0.0403	0.03	0.8679

<u>Table C-13.</u> Repeated measures ANOVA results for flight performance statistics - Trim on and off.

		PARAMETERS BY	PARAMETERS BY	ERS BY MANEUVER	MANEUVER		TEMPERATIIRE		MAIN EFFECTS	Macaini	INTER	INTERACTION
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	F VALUE	P VALUE	FVALUE	P VALUE	FVALUE	P VALUE
НОУ	AVG ALT	6	194 79	150 44	30 327							
	STD ALT	6	133.38		173.23	192.56	0.02	0.8988	0.94	0.3615		608.0
	AVG HEADING	6	9.86		9 9 9	110.37	7007	0.0043	00.1			0.031
	STD HEADING	6	0.60	1.10	0.48	1.59	3.97	0.0814	25.68	100	3.87	0.1880
HOM	AVC DAIT	٠	25.0									100.0
2	STO BALT	200	8/.6	99.6	9.63	10.48	3.81	0.0866	8.31			0.0642
	AVG ROT		50.5	1.3/	1.08	1.85	0.91	0.3693	5.41			0.4635
	STD ROT	6	2.40	17.0-	-0.08	-6.72	2.77	0.1348	7.47	0.0257	2.91	0.1263
	į		2:-2	04.7	65.7	7.50	0.88	0.3757	0.10			0.8027
RSRT	AVG_ALT	6	1998.31		2004 09	1983 10	0.58	10000	0.70			
	STD ALT	6	25.70		25.55	40.70	14.39	0.0068	7.48	The Start and		0.1939
	AVG_ROT	6	3.00	3.00	3.00	3.06	100	0.3466	5.5			0.0340
	STD_ROT	6	0.56		69.0	0.71	1.59	0.2477	0.45			0.3400
	AVG ASP	6	120.69		120.58	120.24	0.42	0.5370	1.05			O GERA
	SID_ASP	9	1.75		1.81	2.63	17.59	0.0041	8.37	0.0232	4.81	0.0844
ICT	AVG ASP	o	447.07	22 277								
	STO ASP	p 0	18.71	118.53	118.67	117.01	1.12	0.3256	1.30			0.0521
	AVG ROT	0	2,18	7,47	2.03	2.58	90:0	0.8176	4.45			0.3088
	STD ROT	6	105	10.2-	49.2-	-3.05	4.55	0.0705	2.27	0.1755	3.28	0.1132
	AVG ROC	6	450 23	447.44	00.1	1.19	1.02	0.3454	0.55			0.0277
	STD ROC	6	224 97	221.47	149.03	14.1.41	20.	0.2354	1.79			0.3564
	AVG_SLP	6	-0.91	-1.05	0.0	1 01	3	0.2310	15.4			0.0731
	STD_SLP	6	0.0	00:0	0.03	900	203	0.7 100	0.40			0.9014
						0000	20.7	0.1910	0.10			0.6845
Q.	AVG HDG	6	164 28	173.19	175.20	95.33	53.59	0.0002	51.54			ט עעט ט
	AVG ALT	5 0	15.73	18.69	14.80	1.93	6.27	0,0407	18.56	0,0035		17200
	STD ALT	. 0	27.18	2529.22	2520.94	2540.05	0.69	0.4335	1.78			0.4166
	AVG ASP	6	120 11	119.67	19.95	30.11	1.36	0.2818	9.56			0.2584
	STD_ASP	6	1.97	1 98	1 75	119.48	0.10	0.7084	6.65			0.8869
	AVG_ROLL	đ,	-0.19	-0.30	-0.23	0.67	4 50	0.1707	3.02	1 2 2		0.2586
	STD_ROLL	6	1.94	1.98	1.94	2.33	1.16	0.3177	3.13		3.29	0.1126
	40. 0.0									1171.0	4.10	0.1033
	AVG ASP	00 0	119.53	119.59	119.72	118.76	0.52	0.4932	0.59	0.4682		0.4130
	AVG ROT	n o	2.73	2.42	2.02	2.85	0.88	0.3793	30.59			0.4012
	STD ROT	o	4.08	-2.69	-2.86	-2.83	5.19	0.0569	0.08	0.7856		0.8552
	AVG ROC	6	428.28	1.03 1.03 1.03	1.03	00.1	2.16	0.1855	0.01			0.4758
	STD_ROC	6	213.73	241 33	210 77	40.00¢	41.14	0.3208	1.26			0.9524
	AVG_SLP	6	-0.84	-0.64	-0.64	-0.45.3	0.84	0.1283	12.44			0.3322
	STD_SLP	6	0.19	0.33	0.19	0.28	0.17	0.6910	4 20	0.4/91	0.85	0.3613
NOF	AVG HDG	٥	36,000									1001:0
	STD HDG	0	A 70	237.71	239.47	228.85	8	0.3337	2.02	0.1929		0.3039
	AVG_RALT	6	51.60	54.21	51.35	2.83	4.29	0.0720	0.21	0.6586	0.00	0.9770
	STD_RALT	6	28.19	27.14	28.86	26.16	200	0.1273	2.71	0.1385		0.0817
	AVG ROLL	6	-0.22	-0.38	-0.21	-0.69	0.27	0.6168	0.00	0.9032		0.6559
	STD ROLL	6	4.86	4.60	4.85	4.84	0.08	0.7893	0.08	0.7831		0.075
	STD SLP	50 00	0 13	0.11	-0.10	-0.03	0.76	0.4088	1.23	0.2995		0.6601
	20.7	· ·	76.0	0.54	09:0	0.53	0.01	0.9411	0.30	0.5968	0.11	0.7475
CONTOUR	AVG_HDG	6	115.39	112.58	109.18	142 64	14 25	0.0064	5161	0000		00000
	STD_HDG	6	18.47	15.50	12.71	3.93	19.05	0,0024	15.24	0.000		0.0002
	AVG KALT	6	94.96	100.51	96.93	103.74	0.16	0.7003	2.05	0.1900		0.5377
	AVG POLI	» o	42.78	41.97	40.03	38.79	1.99	0.1962	0.32	0.5861		0.9316
	STD ROLL	5	3.04	97.0	-0.26	-0.18	200	0.8417	0.90	0.3710		0.6876
	AVG_SLP	6	-0.04	-0.03	2.93	3.72	0.85	0.3829	0.70	0.4262	3.55	0.0963
	STD_SLP	6	0.42	0.31	0.42	0.03	4 88	0.0587	0.67	0.4356	0.45	0.5219
					I as	1120	100.F	V.0304 J	U.33	U.46/b	0.67	0.4361

<u>Table C-14.</u> Repeated measures ANOVA results for flight performance statistics - Trim on.

	AVERAC		PARAMETERS BY MANE		LATOR FLIGHT PERFORMANCE		TEMPERATURE	ATURE	MACHINIT	- Ma	TEMPERATURE X III	TEMPERATURE X LINIEORM
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	FVALUE	PVALUE	F VALUE	P VALUE	FVALUE	P VALUE
HOV	AVG ALT	6	180.83	143.50	178.69	192.61	0.78	0.4042	0.51	0 4940		13374
	STD ALT	0	133.38	114.14	115.38	148.37	0.97	0.3543	1.00	0.3474		0.0317
	STD HEADING	n o	9.81	10.06	9.89	10.44	3.07	0.4040	2.77	0.1344	0.22	0.6491
						100.1	16:0	11000	70000	2000		0.0649
НОУТ	AVG_RALT	6	69:6	98.6	9.61	10.67	2.40	0.1603	19.81	0.0021		0.0305
	STD RALT	on c	1.03	1.37	1.08	1.65	0.91	0.3693	5.41	0.0484		0.4635
	STD ROT	. O	2.40	2.46	-6.03	-6.83	3.31	0.1063	9.07	0.0168	5.23	0.0516
						00:3	20:0	0.010	0.10	0.7337	0.0	0.6027
RSRT	AVG_ALT	6	1996.78	1995.75	1998.72	1998.56	0.16	0.6985	0.03	0.8585		0.9377
	STD ALT	6	17.81	18.31	19.16	24.75	73.77	1.6414	43.81	1.6951		0.9760
	AVG ASP	n 0	120.81	420.75	0.59	0.63	1.82	0.2190	0.38	0.5581		0.6115
	STD ASP	6	1.34	1.38	1.22	160.31	1.83	0.21//	97.0	0.7524	0.00	1.0000
									2007	0.100		0.4300
LCT	AVG_ASP	6	118.41	118.44	118.69	118,31	90:0	0.8118	0.24	0.6409		0.6117
- Contraction of the Contraction	STD ASP	30 0	2.03	1.91	1.63	2.13	0.53	0.4905	0.57	0.4758		0.1176
	STD ROT	o or	-2.88	-2.94	-2.97	-3.00	0.78	0.4051	0.28	0.6235	0.02	0.9031
	AVG ROC	6	447.81	457.38	444 97	480 84	0.61	0.4505	0.13	0.7318		0.0492
	STD_ROC	6	195.31	177.25	97.59	197.00	9.68	0,0170	1.71	0.2321		0.0863
	AVG_SLP	6	-0.72	-0.75	-0.41	-0.75	3.72	0.0950	2.17	0.1840		0.3052
S	AVG HDG	8	148 75	185 97	47.078	09 08	12.40	0 0000	. 17.01	00000		
	STD HDG	6	29.91	34.88	28 28	156	6 17	8000	10.71	78000		C.CC13
	AVG_ALT	6	2515.22	2513.38	2515.47	2540.00	3.75	0.0941	1.88	0.2122	1.82	0.2199
-	STD_ALT	6	16.19	17.91	15.50	19.00	0.01	0.9075	1.83	0.2180		0.5507
	AVG ASP	50 0	119.81	119.31	119.47	119.75	0.01	0.9247	0.11	0.7550		0.4309
	AVG ROLL	o o	50.1	80.0	1.4/	2.00	0.72	0.4229	1.37	0.2807		0.4071
	STD_ROLL	66	1.31	1,41	1.31	2.00	5.28	0.1023	2.00	0.1430		0.1299
	AVG_SLP	6	-0.03	-0.03	-0.03	-0.19	1.38	0.2788	0.39	0.5514		0.2788
ì	201 0111	ě										
3	AVG ASP	D 0	119.25	119.28	119.19	120.06	1.37	0.2795	1.12	0.3254		0.3741
4	AVG ROT	o on	200-	1.9 84	1.47	1.75	1.34	0.2857	0.28	0.6146		0.5238
	STD_ROT	6	1.06	1.00	0.97	0.75	4.43	0.0732	1.58	0.2492	600	0.4603
	AVG_ROC	o	-424.97	-445.97	-448.03	467.25	2.41	0.1642	2.31	0.1722		0.9643
	STD_ROC	6	165.09	173.91	158.72	200.81	0.39	0.5525	3.42	0.1068		0.4078
	AVG_SLP	ŝ	-0.06	-0.09	-0.03	-0.19	0.37	0.5630	1.47	0.2654		0.4700
NOE	AVG_HDG	i os	239.35	237.71	239.51	234.00	0.10	l	0.39	0.5520		0 7308
	STD_HDG	6	6.79	6.44	3.32	2.93	4.29	0.0720	0.21	0.6586		0,9770
	AVG RALT	on o	51.60	54.21	51.36	70.23	2.89		2.71	0.1385	4.71	0.0617
	AVG ROLL	6	-0.72	P1.12	0.00	26.16	0.01	0.9199	0.00	0.9652		0.6559
	STD_ROLL	6	4.86	4.58	4.85	4.84	0.10		0.12	0.2208		0.3410
	AVG_SLP	6	-0.22	-0.38	-0.20	-0.92	0.76		1.23	0.2995		0.0233
	STD_SLP	6	0.58	0.54	0.60	0.53	00'0		0.41	0.5401		0.8268
CONTOUR	AVG HDG	6	115.39	112 58	109 18	149 GA1	14 25	79000	19 19	POOR		4440
	STD_HDG	6	18.47	15.50	12.71	3 83	19.05	0.0024	15.24	A STATE		2000
	AVG_RALT	6	96.76	100.76	6.93	103.74	0.12	0.7371	2.21	0.1758		0.5612
	STD_RALT	6	42.78	41.97	40.03	38.79	1.99	0.1962	0.32	0.5861		0.9316
	AVG ROLL		2.04	-0.22	-0.26	-0.16	0.04	0.8417	06:0	0.3710	0.17	0.6876
	AVG SLP	0	3.20	2.70	7.93	3.72	0.85	0.3829	0.70	0.4262		0.0963
	STD SLP	6	0.42	0.29	0.42	0.03	5.13	D. Iosu	0.92	0.3652		0.4528
							22.2	in the latest and district on the latest	0.101	0.147.0		9796'n

<u>Table C-15.</u>
Repeated measures ANOVA results for flight performance statistics - Trim off.

	AVERAGE	S AND STAN	AVERAGES AND STANDARD DEVIATION	INS OF SIMIL ATOR ELICHT BEBEOBHANCE	CHT DEDECIDIANCE				010111			
			PARAMETE	PARAMETERS BY MANEUVER	GILL TENTON MANGE		TEMPE	MAIN TEMPERATURE	MAIN EFFECTS	UNIFORM	INTER	INTERACTION TEMPERATURE X IINIFORM
MANEUVER	PARAMETER	NUM TSs	ABDU, 70°F	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F	F VALUE	P VALUE	FVALUE	P VALUE	FVALUE	P VALUE
RSRT	AVG ALT	6	1999 BA	2012 10	204 700	00 1501						
	STD ALT	0	20.00	2012.18	2014.29	19/1.69	0.47	00000	0.64	0.4508	2.80	0.1323
	AVG DOT		80.00	32.69	32.47	56.88	7.07		3.82	0.0917	3.65	0.0978
	TO OT	B	3.00	3.00	2.85	3.13	0.01		2.31	0.1725	2.31	0.1725
	02.00		0.72	0.81	0.73	0.81	000	0.9678	1.55	0.2537	8	0 0 780
	AVG ASP	•	120.31	120.38	120.12	120.19	0.24		0.04	0.8505	8	0.0048
	SID_ASP	6	2.16	2.31	2.07	3,63	6.98		17.51	1 00 W	705	
											100.1	1700'0
5	AVG_ASP	6	117.53	118.63	118.66	115.69	1 18	03140	76.1	0000		DATE NO.
	STD_ASP	6	2.68	3.00	2.75	3.31	O RA		2.08	70700	6	
	AVG_ROT	6	-2.88	-2.69	-2.72	-3 13	175		00.7	4760'0	0.12	4.7384 1.7384
	STD ROT	6	0.97	1.8	1.03	1 13	2 33		2.00	0.1554	0.00	200
	AVG_ROC	æ	452.68	438 91	451 09	45.24	20.7		0.08	0.3807	0.20	0.6682
	STD_ROC	6	337.66	295 84	46.480	20.000	0.40		0.78	0.6856	0.71	0.4278
	AVG SLP	6	2	10.007	40.103	300.23	* 0.0	İ	0.81	0.3993	5.20	0.0587
	O CO CLO			5.	8.	-1.25	0.19		2.33	0.1705	20.0	0,8551
	20.00		60.08	0.38	0.25	0.50	1.34	0.2849	5.90	9970'0	0.01	0.9094
13	ALC: USO	·										
70	AVG HUG	3	179.81	180.41	179.63	100.94	51.66	0,0002	47.98	0.0062	48.40	0000
	2010	æ	85	1.75	1.31	2.31	1.58		15.89	0.0063	8.48	***************************************
	AVG AL	2	2527.50	2545.06	2528.41	2538.00	0.33		131	0.2003	7.0	2470
	STD_ALT	6	32.13	30.09	24.41	41.06	0.88		5.74	2676 V	7 4 4	0.7187
	AVG_ASP	0	120.41	120.03	120.63	11931	0.75		10.54		100	0.3100
	STD_ASP	æ	2.41	2.41	2.03	3.50	3.07		2.84	0 1503	0.00	0.4488
	AVG_ROLL	æ	-0.50	99:0-	-0.63	1.08	118		0.7	77900	60.0	0.2629
	STO ROLL	8	2.58	2.56	2.58	3.38	443	2000	1.00	0.004	78.	0.2082
	AVG_SLP	æ	-0.31	-0.66	.038	0.084	100			0.000	-	0.3205
	STD_SLP	æ	0.09	0.16	800	0.38	0.0		3 6	0.003	2 .	0.7655
						200	10.0		2.00	0.1344	1.47	0.2841
5	AVG_ASP	8	119.81	119.91	120,251	117 75	080	0.084.0	1.04	70000	-0.0	
	STD_ASP	8	2.75	3.44	244	2	20.00		47.00	0.3031	0.87	0.3829
	AVG_ROT	6	-2.72	95 6-	2.84	37.6	0.00		8.8	2000	0.85	0.3875
	STD_ROT	6	1.09	1 10	00	10.1	2.70	0.139	/g.*	0.06/6	0.10	0.7827
	AVG ROC	6	431 50	30 107	0000	67.1	100	0.7485	1.75	0.2275	0.11	0.7486
	STD ROC	0	00.000	C3.124	00.00	427.00	0.00	0.8729	0.08	0.8203	8.0	0.9865
	AVG SID		202.30	18:41	280.81	397.88	2.25	0.1772	15.25	69000	0.57	0.4759
	OTD GID		77.1.	-1.19	-1.25	-1.63	1.30	0.2909	0.55	0.4818	1.40	0.2759
	210_010	•	0.36	0.86	0.38	0.56	0.17	0.6910	4.20	9620'0	0.12	0.7397

<u>Table C-16.</u> Repeated measures ANOVA results for simulator incidents.

			MEAN SIMULATOR INC	LATOR INCIDENTS BY CONDITION	NOILIQ		MAINE	MAIN EFFECTS		INTER	INTERACTION
						TEMPERATURE	TURE	HINO	JNIFORM	TEMPERATU	TEMPERATURE X UNIFORM
EVENT	NUM TSs	NUM TSS ABDU, 70°F	MOPP IV,70°F	ABDU, 100°F	MOPP IV, 100°F	FVALUE	P VALUE	FVALUE	P VALUE	FVALUE	P VALUE
				TO SECURE OF SECURE		1.00					
Total Simulator Flight Time	6	249.78	243.56	238.44	64.44	379.22	0,0000	256.66	0,000	194.81	0,0000
Air Assault	o	121.11	119.89	119.67	64.44	39.74	0.0002	45.44	0.0001	37.08	0,0003
MedEvac	6	123.44	123.67	229.89	0.00	0.02	0.8821	4.37	0.0699	4.22	0.0741
Crash											
rotor strike	6	00.0	0.00	0.44	0.00	3.37	0.1038	3.37	0.1038	3.37	0.1038
stabilator strike	6	0.89	0.89	0.44	0.11	4.57	0.0651	0.50	0.4996	0.33	0.5796
during hover	6	0.00	0.00	00.0	0.00		,	,		ı	1
attempting to land	6	8.0	0.11	0.00	0.22	1.00	0.3466	2.00	0.1950	1.00	0.3466
flew into terrain	8	0.67	00:00	0.44	0.00	0.31	0.5943	6.90	0.0304	0.31	0.5943
loss of control at alt	6	0.22	00'0	0.00	0.11	0.31	0.5943	0.31	0.5943	4.00	0.0805
other	6	0.22	0.22	00'0	0.22	0.64	0.4468	0.37	0.5588	0.64	0.4468
Sub Total	6	2.00	1.78	1.33	79'0	2.93	0.1251	0.38	0.5563	0.18	0.6848
Average	6	0.29	0.25	0.19	0.10	2.93	0.1251	0.38	0.5563	0.18	0.6849

<u>Table C-17.</u>
Repeated measures ANOVA results for simulator incidents per hour.

		MEAN	MEAN SIMULATOR IN	OR INCIDENTS BY CONDITION	CONDITION		MAIN EFFECTS	FECTS		INTERACTION	CTION
							TEMPERATURE	JIND	UNIFORM	TEMPERATURE X UNIFORM	E X UNIFORM
EVENT	NUM TSS	NUM TSS ABDU, 70°F MOPP IV	MOPP IV,70°F	ABDU, 100°F	',70°F ABDU, 100°F MOPP IV, 100°F	FVALUE	P VALUE	F VALUE	P VALUE	F VALUE	P VALUE
					4.644						
Total Simulator Flight Time	6	249.78	243.56	238.44	64.44	379.22	= +00000 o + +	256 66	A STORY OF	104 R1	
Air Assault	6	121.11	119.89	119.67	64.44	39.74	0.0002	45.44	THE PERSON NAMED IN	37.08	
MedEvac	6	123.44	123.67	229.89	0.00	0.02	0.8821	4.37	6690 0	4 72	0.0744
Crash											2.00
rotor strike	6	0.00	0.00	0.11	000	3.46	0.0008	2 45	00000	37.0	
stabilator strike	6	0.21	0.22	0.11	0.12	1 10	0.030	0.40	0.0330	3.40	0.0998
during hover	6	0.00	0.00	0.00	00.0		0070	200	0.3323	8.0	0.8939
attempting to land	6	000	0.03	0.00	0.26	2.19	0 1771	2.28	0.1695	2 40	7247
flew into terrain	6	0.16	0.00	0.11	0.00	0.28	0 6098	27.72	0.004	0.00	0.77.1
loss of control at alt	6	0.05	0.00	0.00	0.20	0.49	0.5035	0.49	0.5035	1.66	0.0030
other	6	0.05	0.05	0.00	0.27	0.79	0.3994	1.58	0.2445	2.60	0 1452
Sub Total	6	0.47	0.43	0.33	0.85	29'0	0.4370	0.58	0.4680	2.18	0.1782
Average	6	0.07	90:0	0.05	0.12	29'0	0.4368	0.58	0.4679	2.18	0.1781

Appendix D. Flight performance charts.

<u>Table D-1.</u> Time weighted simulator incident rates.

<u>Table D-2.</u>
Flight performance scores: Trim on and off.

<u>Table D-3.</u>
Flight performance scores: Trim on.

<u>Table D-4.</u>
Flight performance scores: Trim off.

<u>Table D-5.</u>
Flight performance averages by maneuver and condition: Trim on and off.

<u>Table D-6.</u>
Flight parameter averages by maneuver and condition: Trim on.

<u>Table D-7.</u>
Flight parameter averages by condition: Trim off.

<u>Table D-8.</u>
Flight parameter maximums by maneuver and condition: Trim on and off.

<u>Table D-9.</u>
Flight parameter maximums by maneuver and condition: Trim on.

<u>Table D-10.</u>
Flight parameter maximums by maneuver and condition: Trim off.

<u>Table D-11.</u>
Flight parameter minimums by maneuver and condition: Trim on and off.

<u>Table D-12.</u>
Flight parameter minimums by maneuver and condition: Trim on.

<u>Table D-13.</u>
Flight parameter minimums by maneuver and condition: Trim off.

Appendix E. Spectral analysis of cyclic and collective inputs.

<u>Table E-1.</u>
Four-way ANOVA for hover and hover turn - FFT

Hover
Summary of All Effects

Effect

Controls
Percent
Temperature
Uniform
Controls and Percent
Control and Temperature
Percent and Temperature
Control and Uniform
Percent and Uniform
Temperature and Uniform

df	MS	df	MS		
Effect	Effect	Error	Error	F	p-level
- 2	1.4119	8	-0.1449	9.7443	0.0072
2	9.3405	8	0.1759	53.1029	0:0000
1	0.0015	4	0.0086	0.1706	0.7008
1	0.0884	4	0.0134	6.6188	0.0618
4	0.9925	16	0.0916	10.8377	0.0002
2	0.0101	8	0.0085	1.1845	0.3543
2	0.0025	8	0.0048	0.5308	0.6075
2	0.0427	8	0.0160	2.6607	0.1301
2	0.0751	8	0.0126	5.9438	0.0262
1	0.0250	4	0.0255	0.9818	0.3778

Hover Turn Summary of All Effects

Effect

Controls
Percent
Temperature
Uniform
Controls and Percent
Control and Temperature
Percent and Temperature
Control and Uniform
Percent and Uniform
Temperature and Uniform

df	MS	df	MS		
Effect	Effect	Error	Error	F	p-level
-22	7-1696	- 128	0.01016	21.29874	-0.00064
2,5	11.7979	B ,	(0.418) jil	65 4919	0.0000
1	0.0141	4	0.0207	0.6791	0.4562
1	0.0852	4	0.0316	2.6999	0.1757
Berry Pro	14470	16.7	0.0510	27/8757	0.00000
2	0.0009	8	0.0150	0.0576	0.9444
2	0.0133	8	0.0168	0.7908	0.4860
2	0.0434	8	0.0562	0.7735	0.4931
2	0.0544	8	0.0241	2.2582	0.1669
1	0.0022	4	0.0494	0.0440	0.8442

<u>Table E-2.</u> Repeated measures ANOVA results for FFT - Hover.

		MEAN	MEAN SIMULATOR INC	OR INCIDENTS BY CONDITION	CONDITION		MAIN EFFECTS	FECTS		INTERACTION	CTION
						TEMPERATURE	ATURE	UNIFORM	DRM	TEMPERATURE X UNIFORM	E X UNIFORM
EVENT	NUM TSs	ABDU, 70°F	MOPP IV,70°F	ABDU, 100°F	MOPP IV, 100°F	F VALUE	P VALUE	F VALUE	P VALUE	F VALUE	P VALUE
FA1M, 10%	9	0.04	0.04	0.03	0.05	0.11	0.7563	0.26	0.6400	3.77	0.1240
FA1M, 50%	9	0.21	0.20	0.15	0.15	2.79	0.1702	0.08	0.7864	0.01	0.9220
FA1M, 90%	9	1.03	1.13	0.92	1.14	0.87	0.4039	1.65	0.2689	0.33	0.5964
FA1M, Power Sum	9	1371.42	1676.48	1048,46	2601.30	2.09	0.2222	23,90	1800.0	5.63	0.0765
FA1M, Peak	9	0.11	0.08	0.08	0.11	0.01	0.9438	00.0	0.9874	J. J. S. 13.05	3 4 4 4 4 1 0 0 2 2 5
FA1M, Skew	9	2.61		2.72	1.81	5.13	0.0861	0.01	0.9217	16.01	F. 1. F. 10.0179
	9	0.99	1.10	0.88		1.07	0.3598	1.52	0.2851	0.23	0.6583
FB1M, 10%	9	0.02	0.02	0.02	0.02	1.34	0.3108	0.03	0.8805	89.83	E C P. P. 0,0428
FB1M, 50%	9	01.10		0.09	0.14	0.03	0.8609	5.45	0.0798	0.61	0.4799
FB1M, 90%	9	0.84	96.0	0.76	1.12	0.63	0.4718	11.44	0.0277	86'0	0.3784
FA1B, Power Sum	9	2703.44	3641.57	1935.30	5580.44	1.71	0.2606	234.19	0.0001	4.67	0.0967
FA1B, Peak	9	0.05	0.04	0.04	0.04	4.67	0.0967	1.37	0.3060	2.49	0.1894
FA1B, Skew	9	2.10	2.50	2.28	2.86	0.41	0.5562	3.39	0.1394	0.19	0.6858
FA1B, Frequency Band	9	0.81	0.94	0.74	1.10	0.82	0.4173	11.33	. 0.0281	96'0	0.3839
FCOLL, 10%	9	0.0	0.02	0.03	0.03	0.16	0.7129	0.07	0.8017	2.68	0.1769
FCOLL, 50%	9	0.09	90.0	20'0	0.07	0.45	0.5379	4.20	0.1097	1.25	0.3262
FCOLL, 90%	9	0.29		16.0	0.29	0:30	0.6147	0.30	0.6116	00:0	0.9581
FCOLL, Power Sum	9	39637.00	41443.73	16867.98	163092.73		0.1229	4.84	0.0926	2.67	0.0758
FCOLL, Peak	9	90.0	3 0.05	90'0	0.07		0.1404	1.61	0.2732	4.87	0.0919
FCOLL, Skew	9	2.19		1.64		87.44	0.0038	6.12	0.0686		0.7059
FCOLL, Frequency Band	9	0.26	0.24	0.29	0.26		0.6149	0.28	0.6252	0.01	0.9298

<u>Table E-3.</u> Repeated measures ANOVA results for FFT - Hover turn.

		MEAN	MEAN SIMULATOR INC	CIDENTS BY CONDITION	CONDITION		MAIN EFFECTS	FECTS		INTERACTION	CTION
EVENT	10 TO TO	14001				TEMPERATURE	rure	UNIFORM	SM .	TEMPERATURE X UNIFORM	E X UNIFORM
FA1M 10%	NOW 13S	ABDU, /0'F	MOPP IV,7	ABDU, 10	MOPP IV, 100°F	F VALUE	P VALUE	F VALUE	P VALUE	FVALUE	P VALUE
EA1M 50%					0.03	5.11	0.0867	0.12	0.7440	0.43	0.5476
EA1M 90%	٥			0.18	0.19	1.84	0.2466	90'0	0.8178	200	0.5470
EA1M Dower Sum	٥			1.06		97.0	0.4315	3.41	0.1386	1 29	0.335
FA1M Peak		351	286	2921.73	3871.74	0.61	0.4789	1.91	0.2386	0.99	0.3761
FA1M. Skew	9 4	0.09		0.07	0.04	2.11	0.2201	90'0	0.8127	0.64	0.4671
FA1M. Frequecy Band	9 4			2.94	3.68	0.40	0.5628	1.93	0.2375	0.07	0.8092
9 FB1M 10%	9		07.1	1.03	1.42	1.08	0.3578	3.41	0.1383	1.50	0.2873
FB1M 50%	0 4			0.03	0.02	0.36	0.5824	0.04	0.8491	1.18	0.3389
FB1M, 90%				0.17	0.22	20.0	0.7979	0.79	0.4241	0.00	0.9531
FA1B Dower Sum				1.00	1.14	0.16	0.7058	0.69	0.4523	0.01	0 9459
FA1B Peak	0 4	8	1/26	8959.81	24907.22	0.48	0.5277	1.79	0.2520	0.06	0.8117
FA1B. Skew				0.05	90.0	0.16	0.7065	0.24	0.6529	0.05	0,8303
FA1B, Frequency Band	9 (4	0.93		3.82	3.31	0.68	0.4570	0.00	0.9988	6.64	0.0615
FCOLL, 10%	9		70.1	0.98	1.12	0.18	0.6939	0.73	0.4416	00:0	0.9631
FCOLL, 50%	9			0.03	0.03	1.07	0.3591	0.05	0.8379	0.00	0.9517
FCOLL, 90%	9		90.0	90.00	20.08	2.19	0.2127	0.13	0.7343	0:30	0.6113
FCOLL, Power Sum	9	299246	424956	180444 75	67.0	1.16	0.3421	0.76	0.4333	69.0	0.4535
FCOLL, Peak	9		200	100444473	287602.06	1.61	0.2738	0.00	0.9811	0.42	0.5524
FCOLL, Skew	9		80.0	0.00	0.00	0.73	0.4400	0.01	0.9445	0.38	0.5723
FCOLL, Frequency Band	9			2.07	797	0.15	0.7159	0.22	0.6605	0.01	0.9236
				0.33	0.22	0.67	0.4580	0.88	0.4025	99:0	0.4620

<u>Table E-4.</u> Spectral analysis results - Power sum.

<u>Table E-5.</u> Spectral analysis results - Peak.

<u>Table E-6.</u>
Spectral analysis results - Cumulative power.

<u>Table E-7.</u> Spectral analysis results - Skew.

<u>Table E-8.</u>
Spectral analysis results - Frequency band.

Appendix F. MATB performance and scripts.

<u>Table F-2.</u>
MATB: Performance on the tracking and fuel management tasks.

<u>Table F-2.</u>
MATB: Performance on the tracking and fuel management tasks.

<u>Table F-3.</u> Repeated measures ANOVA results for multi-attribute task battery.

	MEAN MATB SC	SCORES BY CONDITION	CONDITION					MAINE	MAIN EFFECTS		INTER	INTERACTION
	EVENT DESCRIPTION	NUMBER TO A	1 1001	1007 14001	1 4000	10001 10001	EMPC		UNIFORM	JKM	EMPERAIU	IEMPERATURE A UNIFORM
EVENI	EVEN I DESCRIPTION	NOM 138	ABUU, /U-F	MOPP4, /0-F	ABDU, 100'F	MOPP4, 100-F	F VALUE	PVALUE	FVALUE	PVALUE	FVALUE	PVALUE
TOUCO			07.9	06.5	0.3	4 70	7.70		37.0			
COMCSD	Standard deviation for correct responses		206	2 10	20.0	4.35	80.5		24.4	0.3280	19.24	78000
COMORT	Mean overall response time		531	6.39	5.37	4.85	08.0	0.000	0.85	0.3633	15.33	3000
COMOSD	Standard deviation for overall responses		2.16	2.26	2.15	*	6.75	0.0408	1.35	0.2898	14 18	2000
COMER	Total number of errors		0.57	0.98	0.64	0.21	8,37	0.0276	000	0.9597	13.39	80108
COMYFA	Othership false alarms	80	0:00	0.00	000	0.00	,	1	'	,		
COMYAC	Othership accuracy errors	8	0.00	00:0	0.00	0.00		,	1	'	,	-
COMYIG	Othership messages correctly ignored	8	3.00	3.00	3.00	3.00		,	ı		1	,
COMAC	Accuracy errors	8	0.38	0.50	0.32	0.21	32.82	0.0012	10.0	0.9309	1.79	0.2292
COMTO	Time out errors	8	0.14	0.25	0.25	000	99'0	0.4418	\$	0.3476	7.02	0.0381
COMUNER	Unexplained errors	8	0.05	0.23	0.07	0.00	4.50	0.0781	2.08	0.1996	8.40	1/200
COMRPT	Repeated enters	8	0.20	17.0	60'0	0.36	1.17	0.3213	5.09	0.0650	0.16	0.7073
LIGHTS and DIALS												
LTSRT	Mean response time for lights	8	2.26	2.77	2.10	2.16	13.07	0,0086	6.18	0.0418	5.25	0.0857
DLSRT	Mean response time for data	8	4.02	5.30	877	4.29	2.75	0.1413	90.6	0,0167	10.44	8,0144
MONRT	Mean response time for lights and dials	8	3.01	3.86	3.15	3.11	19.33	0.0032	10.68	0.0137	12.27	8368
LTSSD	Standard deviation for lights	8	1.64	1.98	1.45	1.24	11.14	0.0125	0.11	0.7455	2.24	0.1785
DLSSD	Standard deviation for dials	8	3.07	3.90	3.56	2.96	0.78	0.4072	95.0	0.4810	808	0,0249
MONSD	Standard deviation for lights and dials	•	2.62	3.33	3.01	2.49	2.25	0.1771	97.0	0.5175	9.54	0.0176
LTSTO	Time out errors for lights		80.0	0.14	0.21	0.13	0.75	0.4139	0.02	0.8955	0.81	0.3974
DLSTO	Time out error for dials		0.77	0.92	0.44	0.25	7.50	0.0290	0.04	0.8417	3.87	0.0899
MONTO	Time out errors for lights and dials	•	0.84	1.06	0.65	0.38	6.24	0.0411	0.03	0.8574	3.95	0,0871
LTSFA	False alarm errors for lights		60:0	0.33	0.17	0.19	99.0	0.4512	1.10	0.3295	1.96	0.2042
DLSFA	False alarm errors for dials	8	0.47	2.14	0.53	1.66	2.42	0.1639	4.62	0.0688	2.62	0.1499
MONFA	raise alarm errors for lights and dials		0.56	2.47	0.70	1.84	2.29	0.1738	4.59	0.0693	3.01	0.1265
LIBER	litte out and talse asam errors for lights	•	0.18	0.54	0.42	0.36	0.10	0.7653	0.65	0.4516	2.64	0.1556
DESER	lime out and false alarm errors for dials		1.21	3.30	0.95	2.04	9.36	0.0242	4.56	0.0767	3.67	0.1038
MONEK	for lights and dials		1.39	3.84	1.36	2.39	7.45	0,0342	4.30	0.0834	4.19	0,0867
REBOURCE MANAGEMENT	54,50		1		(A)							
TNKMAD	Mean absolute deviation of tanks A and B from 2500	8	163.72	200.77	140.53	280.34	0.24	0.6417	1.06	0.3421	0.71	0.4308
TNKAMN	Mean of tank A		2530.15	2551.84	2537.22	2581.32	1.08	0.3389	0.82	0.3990	0.26	0.6296
TNKBMN	ak B	8	2511.61	2560.16	2538.24	2623.08	1.57	0.2563	1.70	0.2397	0.17	0.6954
TRKRMS	Root mean square	8	28.20	47.17	26.85	40.89	5.34	0.0602	96.6	0.0197	1.61	0.25
A CONTRACTOR OF THE PARTY OF	The second secon		1981	1000								

Table F-4. MATB scripts.

106

Appendix G. TLX questionnaire.

<u>Table G-1.</u>
ANOVA results for task load index across task.

	MEANS	MEANS OF TLX OLJESTIONAIRE BY CONDITION	NOTITION OF					
QUESTION	NUM TS	ABDU, 70°I	MOPP4, 70°F	ABDU, 100°F	MOPP4, 100°F			
TASK 1: STANDARD MANEUVERS	6	9 1875	9.40	10.46	77.00	2000		
TASK 2: MATB	80	8.375	9.87		11.69			
TASK 1 AND TASK 2	44		9.68		10.07			
	79	THE RESERVE OF	1000			5000		
TASK 1: STANDARD MANEUVERS	6		6.62	Ě	10.67	Ž.		
TACK 4 AND TACK	8	4.16	5.70	4.65	6.83			
IASK I AND IASK Z	17	5.23	6.18	5.78	8.75			
TASK 1: STANDARD MANELIVEDS								
TASK 2: MATE	D 00	7.31	7.25	7.22	8.85			
TASK 1 AND TASK 2		2,50	187	7.39	9.08			
THE STATE OF THE S		81.7	8.	7.31	¥			
ASK 1: STANDARD MANEUVERS	6	9:38	9.32	000				
TASK 2: MATB		7.69	9.20	7.07	9.92			
TASK 1 AND TASK 2		8.53	9.28	7.78	6.42			
					9.17			
TASK 1: STANDARD MANEUVERS	6	10.94		11.38	13.42			
TASK 2: MATB	8				14.06			
	F	l	11.48	10.83	12.80			
					2.00			
EUVERS	6	3.72		3.69				
TASK 2: MATE	œ	3.45		2.82	4.29			
ASK 1 AND IASK 2	17	3.59	4.85	3.25	5.57			
	Year	3		MAIN EFFECTS				
OUESTION	E VALUE/4 4A	1	EMPERALURE	I UKE	UNIFORM			
MENTAL DEMAND		T VALUE	r VALUE(1,14)	P VALUE	F VALUE(1,14)	P VALUE		
PHYSICAL DEMAND	1 0.10	0.6944	5.13	2 0.03894	7.54	(31) OXO:		
TEMPORAL DEMAND	700	0.2004	28.13	**************************************	11.38	Br. 0.0048		
PERFORMANCE	0.82	0.2701	3.73	0.0/32	9.62	**************************************		
EFFORT	0.28	0.8159	5.83	0.5250	4.13	0.0615		
FRUSTRATION	0.13	0.7239	0.10	3	5.00	60000		
						The state of the s		
	INTERA	TERACTION	INTERACTION	NOIL	INTERACTION	CTION	INTERACTION	CTION
CHESTION		TERM ORE	ASK A UNIFURM	FORM	TEMPERATURE X UNIFORM	X UNIFORM	TASK X TEMPERATURE X UNIFORM	TURE X UNIFORM
MENTAL DENAME	F VALUE(1,14)	P VALUE	F VALUE(1,14)	P VALUE	F VALUE(1,14)	P VALUE	F VALUE(1,14)	P VALUE
MENIAL DEMAND	1.35	0.2849	0.21	0.8580	0.33	0.5739	1.37	0.2643
TEMPORAL DEMAND	6.75	24 - 0.02101 - 2	0.02	0.8861	10.39	0.0081	4.91	E 0.0438
PERFORMANCE	0.44	0.5183	1.21	0.2896	1.35	0.2651	1.12	0.3071
EFFORT	20:0	0.7935	0.07	0.3679	0.29	0.6013	1.13	0.3061
FRUSTRATION	3.93	0.0674	00.0	0.7043	0.85	0.3718	1.28	0.2764
		CONTRACTOR OF STANDARD STANDARD STANDARD	,,,,,	2100.0	0.70	U.3983	2.16	0.1637

<u>Table G-2.</u>
Tlx ratings across task.

Appendix H. Correlation tables.

<u>Table H-1.</u> Correlations of ACS and aviator demographics.

		Marł	ced correl	Marked correlations are significant at P≤.05	significan	t at P≤.05				
111	₽GE	THƏIƏH	WEIGHT	PT SCORE	HEAT STRESS TRAINING	AMIT THOLITIME	UH60 FLIGHT TIME	THEIJA GETAJUMIS JATOT	UNIFORM	BAUTA999M BT
ACS HOVER TURN	-0.0768	0.2043	-0.0273	-0.1517	0.1194	-0.1487	-0.4357	-0.2819	-0.4902	0.0555
ACS RSRT	0.0001	0.0431	0.0306	-0.1894	0.1773	0.1485	-0.1391	-0.1581	-0.3175	-0.2079
ACS LCT	-0.3807	0.4602	0.1217	-0.3016	0.1122	-0.4495	-0.6389	-0.4001	-0.0557	0.0255
ACS SL	-0.1617	0.3583	0.3852	-0.5181	0.1266	-0.0580	-0.2532	-0.1714	-0.2659	-0.0645
ACS LDT	-0.3598	0.1783	-0.0060	-0.2454	0.2020	-0.1357	-0.2200	-0.0410	-0.0038	-0.0610
ACS NOE	-0.2949	0.2824	0.3277	-0.2941	0.0085	-0.1961	-0.0902	-0.0277	-0.1936	0.0104
ACS CONTOUR	-0.3537	0.3254	0.2596	-0.3314	0.0506	-0.2881	-0.1738	-0.0065	-0.4550	-0.0101
ACS HOVER	0.1085	-0.2819	-0.3293	0.0234	-0.1199	-0.0400	0.0228	0.0977	0.1743	-0.1689

<u>Table H-2.</u> Correlations of flight data: ACS scores and aviator demographics-divided by condition.

	TOT SIM	0.3307	0.1545	-0.0461	-0.3262	-0.0921	0.4885	-0.3966	-0.4186		10101	-0.2373	-0.3422	0.0125	-0.2696	-0.1902	-0.0527	0.2745	-0.2140
	JH60 FLIGHT	0.3085	0.0059	-0.2345	-0.5780	0.0167	0.4513	-0.3257	-0.5853		בחסירום טפחו	-0.6160	-0.4514	0.2718	-0.5920	-0.2383	-0.0512	0.0246	-0.3779
p<.05	PT SCORE HS TRAINING TOT FLIGHT UH60 FLIGHT TOT SIM	0.2095	-0.2560	-0.1538	1.00 × 0.00	0.1822	-0.0300	-0.4084	-0.2122	P<.05	PT SCORE HS TRAINING TOT GLIGHT FINES GLIGHT FOR SING	-0.6848	-0.3489	0.4729	-0.6352	-0.0102	0.2918	-0.5209	0.7423
MOPP4, 70°F Marked correlations are significant at p<.05	HS TRAINING	0.2784	0.0253	0.2175	-0.1506	0.1504	-0.0080	-0.4322	0.0724	MOPP4, 100°F Marked correlations are significant at p<.05	HS TRAINING	0.5935	-0.0806	0.2936	0.2456	0.2287	-0.0240	0.2485	0.1610
MOPP4, 70°F orrelations are sign	PT SCORE	-0.6095	-0.3669	-0.6444	-0.0862	-0.5271	-0.3793	-0.4045	-0.6556	MOPP4, 100°F orrelations are signif	PT SCORE	0.0237	0.1343	-0.2924	0.000	0.7573	-0.0611	-0.7011	-0.3402
Marked c	HEIGHT	-0.1392	0.0937	0.3958	-0.0720	0.3927	0.3206	0.7206	0.4564	Marked α	HEIGHT	0.0077	-0.1947	0.2946	0.2466	0.5094	-0.6353	0.6099	0.3209
	WEIGHT	-0.2754	-0.1020	0.3063	0.3920	0.1043	-0.0643	0.4070	0.5753		WEIGHT	0.6081	0.0366	-0.0239	0.5252	0.4261	-0.5769		0.5767
	AGE	-0.6267	0.2014	0.4588	0.5070	0.4601	-0.6085	-0.1276	-0.2021		AGE	-0.5346	0.0013	-0.2293	0.5068	-0.1658	0.1664	0.6233	-0.8055
	`	HOVER -0	HOVT	RSRT	LCT	귏	101	NOE	CONT			HOVER	HOV	RSRT					CONT
	`			لث	<u>ر</u> د		LDT	NOE				HOVER	HOV	RSRT					
		0.2518 HOVER	-0.3092 HOVT	-0.3702 RSRT		-0.5388 SL	-0.3661	0.1051	0.0081 CONT		LIGHT TOT SIM	0.5223		-0.6274	-0.5851 LCT	-0.1221 SL	0.1861 LDT	-0.0788 NOE	0.5374 CONT
.05	IGHT UH60 FLIGHT TOT SIM	-0.0039 0.2518 HOVER	40 7 85 4-0.3092 HOVT	-0.3959 -0.3702 RSRT		# 40 (2003) 1 -0.5388 SL	-0.3661	0.4060 0.1051	0.0546 0.0081 CONT		IGHT UH60 FLIGHT	0.5225 0.5223	9/100 (11/4)	0.7539 -0.6274	- 10.88645 FT -0.5851	-0.4082 -0.1221 SL	-0.2732 0.1861 LDT	-0.3389 -0.0788 NOE	0.1409 0.5374 CONT
ficant at p<.05	IGHT UH60 FLIGHT TOT SIM	-0.0881 -0.0039 0.2518 HOVER	-0.4096 W 0/7/85 -0.3092 HOVT	-0.3959 -0.3702 RSRT		# 40 (2003) 1 -0.5388 SL	-0.3770 (0.76eq1) -0.3661	0.4685 0.4060 0.1051	CONT 0.0546 0.0081 CONT	at p<.05	IGHT UH60 FLIGHT	0.5223	9/100 (11/4)	0.7539 -0.6274	- 10.88645 FT -0.5851	-0.4082 -0.1221 SL	-0.2732 0.1861 LDT	-0.3389 -0.0788 NOE	0.5374 CONT
OPPo, 70°F ons are significant at p<.05	IGHT UH60 FLIGHT TOT SIM	-0.0881 -0.0039 0.2518 HOVER	-0.4096 1 07(85 -0.3092 HOVT	0.1635 -0.3959 -0.3702 RSRT	-0.3562 0 Revent 0)70	-0.4327 P. 10 7.003 12 -0.5388 SL	-0.3770 (0.76eq1) -0.3661	0.4685 0.4060 0.1051	0.0546 0.0081 CONT	100°F 9 significant at p<.05	IGHT UH60 FLIGHT	0.5225 0.5223	0.0703	-0.0644 -0.07.638 -0.6274	-0.5035 -0.5851 LCT	-0.3416 -0.4082 -0.1221 SL	-0.5346 -0.2732 0.1861 LDT	-0.3543 -0.3389 -0.0788 NOE	0.1409 0.5374 CONT
MOPP0, 70°F rked correlations are significant at p<.05	IGHT UH60 FLIGHT TOT SIM	0.4430 -0.0881 -0.0039 0.2518 HOVER	0.2310 -0.4096 -0.7088 -0.3092 HOVT	0.0719 0.1635 -0.3959 -0.3702 RSRT	0.0992 -0.3562 FFD Radon Frontin	-0.0637 -0.4327 P.40, 2003 M0.5388 SL	0.3496 -0.3770 10.766(17) -0.3661	-0.0636 0.4685 0.4060 0.1051	CONT 0.0546 0.0081 CONT	MOPP0, 100⁴F orrelations are significant at p<,05	IGHT UH60 FLIGHT	-0.0005 0.0672 0.5225 0.5223	0.3413 0.0703 F 0.9707 C 0.8146	-0.0644 0.7539 -0.6274	U.140b -U.5035 -U.5035 -U.5035	0.0668 -0.3416 -0.4082 -0.1221 SL	0.2743 -0.5346 -0.2732 0.1861 LDT	0.2119 -0.3543 -0.3389 -0.0788 NOE	-0.2376 0.1409 0.5374 CONT
MOPP0, 70⁵F Marked correlations are significant at p<.05	PT SCORE HS TRAINING TOT FLIGHT UH60 FLIGHT TOT SIM	NO 67.89 0.4430 -0.0881 -0.0039 0.2518 HOVER	-0.4825 0.2310 -0.4096 -0.3082 HOVT	0.1447 0.0719 0.1635 -0.3959 -0.3702 RSRT	-0.1609 0.0992 -0.3562 (C) Radio (O) 7011	-0.3743 -0.0637 -0.4327 # 4072603 M -0.5388 SL	-0.3075 0.3496 -0.3770 w07766177 -0.3661	0.6508 -0.0636 0.4685 0.4060 0.1051	-0.5245 ***0.6689** 0.0546 0.0081 CONT	MOPP0, 100⁴F Marked correlations are significant at p<,05		-0.4654 -0.0005 0.0672 0.5225 0.5223	-0.1529 0.3413 0.0703 * 0.8701 0.8146	0.2018 -0.0644 -0.7539 -0.6274	0.0370 0.1406 -0.5035 -0.5860 0.05851 LCT	-0.03/1 0.0008 -0.3416 -0.4082 -0.1221 SL	0.2743 -0.5346 -0.2732 0.1861 LDT	-0.2199 0.2119 -0.3543 -0.0389 -0.0788 NOE	-0.5150 0.1731 -0.2376 0.1409 0.5374 CONT
MOPP0, 70°F Marked correlations are significant at p<.05	HEIGHT PT SCORE HS TRAINING TOT FLIGHT UH60 FLIGHT TOT SIM	0.0163 (16.299 0.4430 -0.0881 -0.0039 0.2519 HOVER	0.1244 -0.4825 0.2310 -0.4096 1.0000885 -0.3092 HOVT	-0.3197 0.1447 0.0719 0.1635 -0.3959 -0.3702 RSRT	0.0446 -0.1609 0.0992 -0.3562 (0.8869) (0.7071)	0.3901 -0.3743 -0.0637 -0.4327 -0.5388 SL	0.1696 -0.3075 0.3496 -0.3770 0.07786178 -0.3661	0.2615 0.6508 -0.0636 0.4685 0.4060 0.1051	0.2929 -0.5245 (200689) 0.0546 0.0081 CONT	MOPP0, 100⁴F Marked correlations are significant at p<,05	IGHT UH60 FLIGHT	-0.0512 -0.4654 -0.0005 0.0672 0.5225 0.5223	0.1674 -0.1529 0.3413 0.0703 1.08701 0.3146	-0.0629 0.2018 -0.0644 c. 0.7539 -0.6274	0.5653 0.5574 0.1406 -0.5035 0.05851 LCT	0.0100 0.0000 -0.0011 0.0000 -0.3416 -0.4082 -0.1221 SL	0.2342 -0.0112 -0.3567 0.2743 -0.5346 -0.2732 0.1861 LDT	-0.1017 -0.2199 0.2119 -0.3543 -0.3389 -0.0788 NOE	0.2450 -0.5160 0.1731 -0.2376 0.1409 0.5374 CONT
MOPPO, 70°F Marked correlations are significant at p<.05	WEIGHT HEIGHT PT SCORE HS TRAINING TOT FLIGHT UH60 FLIGHT TOT SIM	0.1290 0.0163 0.4430 -0.0881 -0.0039 0.2518 HOVER	0.5181 0.1244 -0.4825 0.2310 -0.4096 1.40000885 -0.3092 HOVT	-0.1000 -0.3197 0.1447 0.0719 0.1635 -0.3959 -0.3702 RSRT	0.4918 0.0446 -0.1609 0.0992 -0.3562 10 8a/s9 0.0001	0.5790 0.3901 -0.3743 -0.0637 -0.4327 -0.5388 SL		-0.2615 0.6508 -0.0636 0.4685 0.4060 0.1051	0.2426 0.4083 0.2929 -0.5245 0.0688 0.0546 0.0081 CONT	MOPP0, 100°F Marked correlations are significant at p<.05	HEIGHT PT SCORE HS TRAINING TOT FLIGHT UH60 FLIGHT	-0.3027 -0.0512 -0.4654 -0.0005 0.0672 0.5225 0.5223	0.1674 -0.1529 0.3413 0.0703 1.08701 0.3146	0.3330 -0.0336 -0.0629 0.2018 -0.0644 (0.7538 -0.6274	0.5402 0.0122 0.0370 0.140b -0.5035 0.5851 LCT	0.3000 0.3000 -0.03/1 0.0008 -0.3416 -0.4082 -0.1221 SL	0.2342 -0.0112 -0.3567 0.2743 -0.5346 -0.2732 0.1861 LDT	0.2511 -0.1017 -0.2199 0.2119 -0.3543 -0.3389 -0.0788 NOE	0.2376 0.2460 -0.5160 0.1731 -0.2376 0.1409 0.5374 CONT

Correlations of TLX questionnaire data vs. ACS scores across all conditions. Table H-3.

		Marl	ked correlat	Marked correlations are significant at p≤ .05	nificant at p	.05 ≥			
	ЗЯUTAЯЗЧМЭТ	УСЗ НОЛЕВ	АСЅ НОУЕК ТИКИ	Асѕ қѕқт	ACS LCT	VCS ST	₽CS LDT	VCS NOE	ясѕ соитоия
MENTAL DEMAND	0.1892	0.1697	0.0881	-0.3488	-0.0884	-0.4698	0.1078	-0.2492	-0.2031
PHYSICAL DEMAND	0.2676	0.1084	-0.1217	-0.4781	-0.2650	-0.4997	0.0107	-0.2658	-0.2911
TEMPORAL DEMAND	0.0708	0.0934	0.2053	-0.2191	-0.0598	-0.2954	0.1138	-0.2267	-0.2851
PERFORMANCE	0.0163	0.3282	-0.0045	-0.1965	0.0133	-0.1192	-0.1614	0.0340	-0.1632
EFFORT	0.0942	0.2778	0.0432	-0.3202	-0.1299	-0.3736	0.0413	-0.2069	-0.1660
FRUSTRATION	0.1400	-0.1382	-0.3648	-0.3497	-0.1689	-0.1326	-0.2488	0.1506	-0.2653
UNIFORM	-0.0294	0.1743	-0,4902	-0.3175	-0.0557	-0.2659	-0.0038	-0.1936	-0.4550

Table H-4.
Correlations of TLX data vs. ACS scores.

										ľ										
	Frustration	-0.2134	0.8166	0.6648	-0.1342	0.1877	-0.3974	-0.0444	0.2285	222		noitstam	0.4448	-0.1279	-0.2308	0.0645	-0.1202	JO 0953	0 2850	0.2020
8	Effort	0.4637	-0.0275	-0.2184	0.1987	-0.1375	0.2215	0.1452	0 0363	2222	8	flort	-0.6314	-0.1583	-0.1442	0.1194	0 1721	0.5345	0000	60070
it at p < .0500	eonsmoheq	-0.1058	0.2285	-0.0064	-0.6290	-0.2102	-0.2433	-0.6784	-0.3453		t at p < .0500	ം വരണമാറ	-0.3075	-0.0693	0.1123	-0.3329	-0.1244	0.3564	.0 1123	2000
MOPP4, 70°F ons are significar	bnsme0 lsnoqmeT	0.6691	-0.0429	0.0118	0.2990	0.2374	0.3846	0.4912	0.3443		MOPP4, 100°F ons are significan	emporal Demand	-0.6742	-0.3684	0.1057	0.0925	0.2362	0.2608	0.0894	0000
MOPP4, 70°F Marked correlations are significant at p < .05000	Physical Demand	0.5297	0.3988	0.2967	0.3760	0.2292	-0.1252	0.5254	0.6081		MOPP4, 100°F Marked correlations are significant at p < .05000	Physical Demand	-0.3216	0.2957	-0.1604	0.4168	0.2278	0.7389	-0.0407	0 1480
Marked	Mental Demand	0.5293	0.0626	-0.0480	0.4882	0.0321	0.0022	0.3817	0.3529		Marked	Mental Demand	-0.6833	0.1027	-0.1045	0.1090	0.0812	0.7188	-0.3118	0.000
_		Hover	Hover Tum	Right Standard Rate Turn	Left Climbing Turn	Straight and Level	Left Descending Turn	Nap Of Earth	Contour				Hover	Hover Tum	Right Standard Rate Turn	Left Climbing Turn	Straight and Level	Left Descending Turn	Nap Of Earth	Contour
	Frustration	-0.4925	0.4395	0.8526	0.2937	0,4564	0.0835	-0.1906	-0.3596			noitesteur 7	-0.6770	0.1848	0.7706	0.5282	0.0703	-0.0502	-0.4500	-0.5756
02000	hoff3	-0.0099	-0.0280	0.1010	-0.2439	-0.0719	-0.3294	-0.1328	-0.1491		8	Είΐοπ	0.4257	-0.3774	-0.1150	-0.3352	0.0525	-0.1039	-0.0431	0.2164
ficant at p < .(Performance	-0.2530	-0.2064	0.5183	-0.3534	-0.2980	-0.3617	0.1984	-0.6779		ıt at p < .0500	enomance	-0.1963	-0.4472	0.0822	-0.1626	-0.2719	-0.0854	-0.5873	-0.1648
MOPPo, 70°F Marked correlations are significant at p < .05000	Temporal Demand	0.3227	-0.0725	-0.2304	-0.2462	-0.0771	-0.3764	-0.2503	-0.0338		MOPPo, 100°F Marked correlations are significant at p < .05000	Temporal Demand	0.7086	-0.3219	-0.2785	-0.4518	0.2220	-0.0342	0.0844	0.3585
MOPP rked correlati	Physical Demand	0.4108	0.3381	0.0628	0.1178	0.1579	-0.0888	-0.5043	-0.0786		MO I correlations	Physical Demand	0.3989	-0.0440	0.1257	-0.0150	0.2637	0.0968	0.1930	0.2210
Ma	Mental Demand	0.0847	0.0010	0.2102	-0.0885	0.0112	-0.3537	-0.2377	-0.3009		Marked	Mental Demand	0.3335	-0.2976	-0.0210	-0.2040	-0.0372	-0.0862	-0.0662	0.0294
	_	Hover	Hover Tum	Right Standard Rate Turn	Left Climbing Turn	Straight and Level	Left Descending Turn	Nap Of Earth	Contour				Hover	Hover Turn	Right Standard Rate Turn	Left Climbing Tum	Straight and Level	Left Descending Turn	Nap Of Earth	Contour

<u>Table H-5.</u>
Correlations of flight data: ACS scores vs. MATB in all conditions.

Marked correlations are significant at p<.05

CONT	0.2069	0.1377	0.1616	0.1031	-0.1956	-0.4154	0.0037	0.0183	0.0533	0.2490	0.2027	0.2666	¥ 0/4829	0.0880	0.2820	# 10.47/44	0.0709	0.3287	0.0275	-0.1225	-0.1094	0.1080	-0.1536	-0.1127	0.0421	0.0411	-0.1813	-0.1654
NOE	0.3708	0.2498	0.3593	0.1964	-0.1517	-0.3041	0.0186	-0.0451	0.3873	0.2089	0.3744	0.3369	0.1698	0.1963	0.3262	0.0102	0.1663	0.1468	-0.0062	-0.1552	-0.1446	0.0198	0.3360	0.4204	0.3195	0.0129	-0.0747	-0.1024
רסד	-0.2172	-0.2828	-0.2528	-0.2978	-0.3560	-0.2647	-0.3444	-0.2349	0.1171	-0.1143	0.1019	0.0164	-0.0794	0.3858	0.3061	-0.1466	-0.3291	-0.3620	-0.1448	0.1968	0.1613	-0.0564	0.2735	0.2283	0.0137	0.0766	0.0590	0.0423
TS.	197109/0	0.3334	9(8)5/0	0.3008	-0.3866	7.08472	-0.1736	-0.1388	0.5778	0.2914	0.1914	0.2787	0.0517	-0.0482	0.0172	-0.0050	-0.0441	-0.0402	-0.0143	0.1470	0.1341	0.1877	0.0157	0.0519	0.0330	-0.0484	0.0693	0.0228
ТЭЛ	0.2491	0.1401	0.2129	0.0678	74074074074	0.6778	-0.1829	-0.2300	0.3454	-0.0941	0.0610	-0.0049	-0.1558	-0.0107	0.0123	0.1118	-0.1986	-0.1051	-0.2757	-0.1194	-0.1505	0.0795	0.2399	0.2264	0.2737	-0.2940	-0.4101	-0.3782
ТЯЗЯ	70776	(0)(6(0)9(0)	(0), 500,641	30620	-0.0807	-0.3093	0.1542	-0.0104	0.3897	0.2370	-0.0062	0.1081	0.1487	0.0214	0.0448	-0.1429	0.4298	0.2835	0.1357	0.2772	0.2763	0.1346	-0.2186	-0.1642	-0.1943	0.0234	0.1788	0.0889
TVOH	0.0327	0.2421	0.0181	0.2300	0.0079	0.0039	0.0595	-0.0805	-0.2110	-0.1152	-0.2665	-0.2332	0.1485	0.1858	0.2003	-0.3323	0.1461	-0.0642	-0.1177	-0.2634	-0.2609	-0.1470	-0.1380	-0.1508	20.0617	-0.1526	0.0064	-0.0716
НОVЕЯ	0.1883	0.3808	0.1637	0.3578	-0.0853	-0.1485	-0.0088	-0.0319	-0.1333	0.2764	0.0639	0.1852	7 40/5048	0.1338	0.2930	0.1685	0.2760	0.3294	0.1088	0.0961	0.1047	0.0120	-0.3276	-0.2847	-0.0320	0.2220	0.0781	0.0987
	COMCRT	COMCSD	COMORT	COMOSD	COMER	COMAC	COMTO	COMUNER	COMRPT	LTSRT	DLSRT	MONRT	LTSSD	DLSSD	MONSD	LTSTO	DLSTO	MONTO	LTSFA	DLSFA	MONFA	LTSER	DLSER	MONER	TRKRMS	TNKMAD	TNKAMN	TNKBMN

<u>Table H-6.</u>
Correlations of flight data: ACS scores vs. MATB.
(See variable descriptions on the next page.)

		Marked correlat	Marked correlations are algnificant at p < .05000	1 at p < .05000			-				Marked correla	MOPP4, 70°F Marked correlations are significant at p < .05000	11 st p < .05000			
ЛОН	HOVŢ	RSRT	LCT	П	TD1	NOE	CONT		НОИ	POOR	1000	3		1		1
	Mark Company	0.3008	0.3248		-0.5422	-0.6907	0.0405	COMCRT	0.2099	0.0331	0.7489	0.3648	92530	907630	100	NO.
0.7453	# 2 PER SE		03/09	0.1081	-0.6914	-0.3865	-0.5552	COMCSD	0.3410	-0.1045	THE DESCRIPTION OF THE PERSON	0.3127	0.2687	0.4979	0.3566	0.3678
COMOSD 0 4314	0.5632	L	0.070	1	0.5946	99090	-0.0636	COMORT	-0.2131	0.0021	0.7826		0.4822	-0.3741	-0.2288	9
	L	90790	20100	1	0000	0.4430	-0.4746	COMOSD	-0.2862	9000			0.2947	-0.4579	-0.3359	2800
	00700	2007	0,100		2000	0.2796	0.1361	COMER	7660°C	-0.2181	03360	0.2555	0.5990		7672.0	٩
Ţ	95.00	2000	2040		-0.5083	0.0689	0.1122	COMAC	-0.0274	0.3832	0.8089	ì	70000	l	0000	١
1	0/107	0.363/	-0.6235		-0.4092	0.7920	-0.2348	COMTO	0.1251	70770	0.084		90000		20000	۱
25.0	0.6631		-0.3764		-0.0690	16050	0.4976	COMUNER	0.000	0	37.50	2000	0.000	0.0010	70350	?
7	0.5169		-0.3776		-0.3802	0.2243	03115	TOWNOO	0,6943	0 4 4 6 5	2000	1	0.000	1	-0.2444	₽
0.2737			0.1676	ĺ	-0.3883	CHARLE WATER	04790	TOOK .		3	C.0820	ĺ	0.000		90890	0.5540
-0.0825	-0.0781	-0.5831	0.3366	0.1870	0 6069	2,000	6.1.00	בופא	/097.0	0.0997	0.2324		7. de.es		0.1001	0
0.1824	0.6097	ļ	0.3820	l	1000	283	0.00	DLaki	0.0263	0.1678	-0.0489		0.7431		0.2102	
0.1489	0.6693	l	1000	1	U.U.O.	20400	0.6545	MONRT	0.589	0.0237	0.0971	0.1858	2000	0.1735	0.1650	-
20807	0.5483		0.4024	2750	0.730	-0.6194	0.3440	LTS8D	0.4415	-0.0061	0.2005	0.1072	0.7228	0.3259	1220	
00001	355		188		0.5954	0.4298	0.2918	D1.89D	-0.0240	0.3546	03860	-0.3961	0 5464	0.0469	0 1000	٦
1100	DOG!	ļ	0.41/1		0.5063	0.2097	0.4177	MONSD	0.4141	0.4684	0.1061	0 4700	9000	2	30.0	1
0.2102	0.3056	1	0.1807		0.4040		0.4163	LTSTO	0.3697	0.0548	0.3660	20,00	2000	0.2234	762.7	1
ļ	0.0663		-0.4182	0.3006		9000	-0.4527	OTATO	1,25.0	0.3600	0.7076	2000	0.0074	0.4100	0.1339	9
		10 m	0.3941				CASE	OTHOR	3	00000	0.7073	-C.1863	0.3268	-0.5/07	0.4150	Y
		0.3708	-0.0483		.0 5887	l	2000	2101	0.740	0.2418	0.8080	0.1334	9000	-0.3746	-0.2816	Ÿ
-0.3203	-0.3130	0.8103	-0.5577	Ī	0.6472	2000	0.1010	K1012	P(7)	0.2620	0.000	0.5127	-0.1045		-0.3384	٩
L		THE PARTY NAMED IN	0 6433	ĺ	0.000	0.2/20	No. O	DLSFA	06390	-0.2245	0.5979	-0.5307	0.0314	0.5970	Control of the Contro	٦
LTSER		A 1472	2000	Ī	0.7448	0.1972	-0.8017	MONFA	-0.7544	0.1097	0.7742	-0.2913	9/900	-0.7743		
	1	7/4/0	-0.1632		-0.1056	0.8103	0.4171	LTSER	-0.2145	-0.1070	0.0208	l	THE PERSON NAMED IN	0.220	0.000	7999
	0.00	0.6316	-0.5945		-0.6133	0.5721	0.0383	DLSER	-0.0874	-0.7832	0.5570		0.255	0.2020	0.000	1
- COO	-0.3628	0.5528	-0.5258		-0.5284	0.6518	0.1248	MONER	0.1483	2077.05	Ī	2000	0.220	0.63/4	-0.4364	0.5778
0.0681	0.2323	-0.3564	0.5603		0.1754	0.0633	0 7988	TOKORS	2002	3	-	0.3030	0100	0.2111	-0.4047	0.3408
0.0348	-0.6778	-0.3685	-0.1012	Γ	0,6090	0.5143	0.1810	TANAMA	9000	0.400	5	A TOLINO		-0.0144	0.6783	۲
0.0334	-0.3768	0.0278	-0.3724	-0.2478	0.1719	0.3884	0.6133	THE PART	2000	0.0000	91110	0.3525	-0.2683	-0.2368	-0.0258	٧
0.3028	0.2101	-0.1250	-0 1474		0.3860	2000	2000	E STATE	0.4329	0.1836	0.2083	-0.6242	-0.0968	0.4045	-0.5210	4
				1	2000	0.0100	0.4000	INKEMN	-0.5722	0.1745	0.2710	-0.5180	-0.0956	-0.5331	-0.5722	-0.1806
		•	ABDU. 100*F													
		Marked correlativ	Marked correlations are significant at p < .05000	at p < .05000								MOPP4, 100*F				
											Marked correla	Marked correlations are significant at p < .05000	11 at p < .05000			
HOV		RSRT	CC		107	¥0¥	CONT		707	5,00	1000	, ,				١
0.0631		0.6861	0.0072	r	5 1484	ı	027.00			1	RORI	3	ı	TOT	NOE	٥
0.5697	A 00 BAN	THE PROPERTY AND ADDRESS.	01119	0.7080	0.3046	20000	Mannager Court of Header	E CO	2770	-0.4024	0.8212	0.6385	0000	-0.2508	0.7844	0.1877
0.1468		0.7173	0 0804	Ť	0000	1			186	-0.6813	0.000	0.4444		-0.3840	0.5441	0.2702
0.4589		ATTENDED AND STREET	7 W O	Ť	2000	4000	0.100	_	0.1810	9,4800	0.7852	0.5120		-0.3484	0.7141	0.1124
-0 7367		A 4592	90000	Î	TANKED KITCHEST CONTRIBUTE	ı			0.1572	-0.6874	0.7386	0.1187		0.5089	0.3683	٩
-0.7449	0.0070	2000	2000	Ī		1	-0.5225		971.0	0.2819	-0.6381	S LOGIM		J. D. C.	- Carrat	
36836	9380	2000	0,1170	Ĩ		-0.3745	-0.4756	COMAC	0.1186	0.2919	-0.6381	Riog		ACRON	1000	0.7540
	0000	0.40	7000	٦		-0.5242	0.4624	COMTO	1	1	1	CHROMOTOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	l	2000	3	7
	0.0274	-0.4/6/	-0.4783		-0.8517	-0.5142	-0.6088	COMUNER	1							İ
	0.0443	0.6188	-0.2322		0.1647	0.6340	0.7180	COMRPT	-0.3873	.0.1711	THE PERSON NAMED IN	00740	C. D. KASAA SCHOOL	1		ľ
4000	0.7577	0.7221	-0.1611	_	0.1864	0,6883	0.6739	TSBT	0.4708	9		0.0713	THE PERSON NAMED IN	COURTS	0.6346	0.0837
	0.2459	-0.3185	-0.2312		-0.0019	0.0852	93311	TOPIC	0.75.0	2000	0.4200	0.224	200	-0.UZ/	0.1023	٥
	0.3705	0.3458	-0.2274	-0.0347	0.1848	0.5244	7000	AGNOS	2000	0.1321	0.430	0.4273	0.6746	-0.0113	0.6541	9
	TAX CONTRACT	0.8538	9,500	Ī	0.0974	0.579	1	THOM:	2000	9000	0.5762	0.1380	0.7284	-0.5302	0.5111	9
Ž	-0.1982	-0 5366	.0.452R	t	0.6447	5000	0.160	1100	0.9626	-0.4048	0.4896	-0.3179	-0.5538	-0.4121	-0.3464	0.4734
	0.0823	-0.21R4	70770	70000	9000	0.000	0.000	ULSSD	0.839		-0.1032	0.0900		0(6186)	-0.1783	0.4947
_	2000	0.4567	00,00	Ť	0.000	2000	-0.320/	MONSO	-0.7316	988	-0.2386	0.1648	0.2724	0.8682	0.140	9
<u> </u>	O Kenn	24070	0.0120	1	0.560	0.0419	0.1128	LTSTO	0.9696	-0.5638	-0.1433	0.1899	-0.1539	-0.3984	0.0253	D 8444
1	1000	0.1074	-0.45ZB	1	-0.8419	940	-0.0911	01810	,	,		,		,		
	1000	Ĩ	0.700	1	0.6340	-0.4336	-0.0488	MONTO	0.8698	-0.5638	-0.1433	0.1899	A 1570	Page 0	0 0000	77700
DIRECT OF STREET	0.165	Ĩ	2000	-0.1757	-0.2611	-0.7388	-0.5960	LTSFA	1			200	2	500.7	V.VOOD	دُدُ
_	0.4/04	0.4690	0.4189		0.2049	-0.3394	0.1793	DLSFA	0.0962	0.0145	0.7383	22000	50,00	00,00	-	ľ
-	0.4117	0.4120	-0.5503	_	-0.2350	0.4408	0.0674	MONEA	5,0063	9500	0.1363	1200	0.000	2000	-0.3131	-0.1877
	0.1472	0.5310	-0.1365		0.7596	0.6124	0.4700	Tero	1	0.00	0.7283	0.0277	8850	200	-0.3131	٩
	0.477	0.6266	0.2319	t	STATE OF	THE RESIDENCE	0.757.0	1	20100	İ	0.0/61	0.2848	0.4811	0.5654	0.7469	q
L	0.4010	0.6237	0.1248	t	2000	C. C. C. C. C. C. C. C. C. C. C. C. C. C	7,017	DESER	20.0	ı	-0.1845	0.3901	0.1210	0.2758	0.4879	٩
L	0.6744	A 24.20	2070	t	0.020.0	9000	0.7041	MONER	0.8120		-0.1566	0.3973	0.1830	0.1643	0.5564	٩
0.0992	9500	0.770	20274	1	20.0	0.4363	0.0279	TRKRMS	0.3947		0.3701	0.5387	0.6664	-0.8344	0.8129	ē
0.0484	0.0634	2000	0.00	0.310/	03/29	-0.4513	-0.2928	TNKMAD	0.0000		-0.0985	-0.3600	-0.1510	0.7445	5 1811	9
0.000	70000	0.000	0.0470		2002.0	0.57	2									
V.000.0	7					2000	0.4110	INKAMN	-0.6197	0.2535	0.1785	-0.3741	0.1775	0.0047	5000	7000

<u>Table H-7.</u>
MATB variable description.

COMERT	Mean response time for correct responses
COMCSD	Standard deviation for correct responses
COMORT	Mean overall response time
COMOSD	Standard deviation for overall responses
COMER	Total number of errors
COMYFA	Othership false alarms
COMYAC	Othership accuracy errors
COMYIG	Othership messages correctly ignored
COMAC	Accuracy errors
COMTO	Time out errors
COMUNER	Unexplained errors
COMRPT	Repeated enters
LTSRT	Mean response time for lights
DLSRT	Mean response time for dials
MONRT	Mean response time for lights and dials
LTSSD	Standard deviation for lights
DLSSD	Standard deviation for dials
MONSD	Standard deviation for lights and dials
LTSTO	Time out errors for lights
DLSTO	Time out error for dials
MONTO	Time out errors for lights and dials
LTSFA	False alarm errors for lights
DLSFA	False alarm errors for dials
MONFA	False alarm errors for lights and dials
LTSER	Time out and false alarm errors for lights
DLSER	Time out and false alarm errors for dials
MONER	Time out and false alarm errors for lights and dials
TNKMAD	Mean absolute deviation of tanks A and B from 2500
TNKAMN	Mean of tank A
TNKBMN	Mean of tank B
TRKRMS	Root mean square

Appendix I. Data collection forms and procedures.

SIMULATOR FLIGHT INCIDENTS Cockpit Temp: _____ °F Humidity: ____ Uniform: _

Today's Date: _

#SL	Time into Mission & CoreTemp	H. Hrs. nim	00000	0000		
TS#	Time into Mission & CoreTemp	E Sim	00000	0000	a a a a a a a a a a a a a a a a a a a	
TS#	Time into Mission & CoreTemp	Hrs °C min	00000	0000		
TS#	Time Into Mission & CoreTemp	Hrs C Similaria	00000	0000		
TS#	Time into Mission & CoreTemp	Hrs o mim	00000	0000	0 0 0 0 mins	
#S.	Time into Mission & CoreTemp	Hrs °C min	00000	0000	0 0 0 mins	
H		TYPE OF INCIDENT	Crash during hover attempting to land flew into terrain loss of control at alt other explanation	Simulator sickness needed to transfer control had to exit simulator caused a crash other explanation	Simulator malfunction electrical problem mechanical " computer " navigational " other time lost explanation	Other

TASK LOAD INDEX QUESTIONNAIRE v 4/26/96

ndav's Data:	day o Date.

Test Subject No.

- ☐ Instructions:
- Administer the series of questions as indicated by the flight profiles.
 Alert test subject "TEST SUBJECT NAME, TLX QUESTIONAIRE".
 Wait for acknowledgement, then go through the questions using the same pace, wording, and inflection for each administration.
 - 4. Record results in appropriate locations.

	OUESTION SCALE On a scale of 0 to 10 please assess your experience related to (appropiate activity) time of the following conditions:	(0 =low 10=high)	(0 =low 10=high)	(0=low 10=high)	(0=good 10=poor)	(0=low 10=high)	(0=low 10=high)	
--	--	------------------	------------------	-----------------	------------------	-----------------	-----------------	--

*data entered on template in correct TLX scale

MAT-B PROCEDURE

- 1. If computer is off, turn the monitor on in the back.
- 2. Set the new date by typing in: Date. Press enter. A date prompt will come on the screen. Here is an example of a date prompt: Thu 2-06-96. If the date is correct, press enter. If the date is incorrect, enter the correct date by typing the two digit month followed by the two digit day followed by the two digit year (mmddyy). Press enter.
- 3. Set the new time by typing in: Time. Press enter. A time prompt will come on the screen. Here is an example of a time prompt: 14:31. If the time is correct, press enter. If the time is incorrect, enter the correct military time. Press enter.

 Caution: It is very important that the correct date and time is set and that you make a note of it, because your test scores data will be filed under these criterea.
- 4. Select Matsb at the C:\. You may do so by scrolling through the menu with the arrows on the keypad . Press enter when Matsb is highlighted.
- 5. Select Matload bat in the same manner as the previous step.
- 6. A menu will now appear on the monitor. Use the arrow to scroll down to the heading "script file". The setting should be at 10mmed.DBT. Press enter. If it is not use the arrows to scroll through the menu and highlight the appropriate selection. **Caution:** Be sure to return the setting to that which was displayed when you first entered the system, before exiting from the system after completion of your test.
- 7. Select the heading "Begin Task, Normal Version", using the arrow. Press enter.
- 8. The Mat-b will now appear on the screen.
- 9. The test will run for five minutes, and at the conclusion of the test a prompt telling you that the test is over will appear on the screen.
- 10. To download your test information onto a disk, highlight the your five files with the advance key. **Caution**: Make sure that you only highlight those files which are yours, use the date and time to properly identify them.
- 11. Use the F6 key to copy/remove the files.
- 12. Change the C: to b: to switch to the b drive. Press enter.

Appendix J. Manufacturers and product information.

Digital Equipment Corporation 110 Spit Brook Road Nashu, NH 03062-2698 VAX 11/780 Computer

Microsoft Corporation P.O. Box 72368 Roselle, Illinois 66172-9900 MicroSoft Office Professional

NASA Langley Research Center Hampton, Virginia 23665-5225 Multi-attribute task battery

SPSS, Inc. 444 North Michigan Avenue Chicago, Illinois 60611 SPSS statistical software

Statsoft 2325 East 13th Street Tulsa, Oklahoma 74104 Statistica software

Vermont Medical, Inc. Industrial Park Bellows Falls, Vermont 05101-3122 ECG pads

Yellow Springs Instrument Company P.O. Box 279 Yellow Springs, Ohio 45387 Rectal and skin thermistors

R 40/1 INFRARED ב 28 '95 Date 10/3 (

TOTAL P. 81

8:27

FROM WWIDE APPL DULPMENT

PAGE. 882

2.5 3.0

GEHERAL () ELECTRIC

LARCE LAMP DEPARTMENT

APPLICATION ENGINE 2 3

Lamp Recommendations for Sunlight Simulation

RADIANT POWER-MILLIWATTS PER 100 ANGSTROMS PER WATT INPUT

LC

10-27-55 ETL-GHZ

مد.

radiation on equipment for photo-degradation and thermal changes. The spectral output of the electric lamps should simulate the ultraviolet, light, and infrared radiation from sunshine on the terrestrial surface. The following equipment is a way to test the effect of solar

mounted as close as possible to each other and requiring one lamp per square foot of area to be covered. Since these lamps feet will be necessary in order to smooth the beam coming of no drop-of is observed at the edges of the target. This system consists of a bank of HR400RDXFL33 mercury lamps

LO

The spectral distribution for this lamp yields B% below 400 nm, 46% between 400 nm and 800 nm, with a total radiated output of 135 watts. While this distribution does not quite meet the requirements of MIL-STD-810C, Method 305.1, is comes quite close, being about 25% more severe. It is the closest way we know of to approach the requirements of MIL-STD-810C at a reasonable cost.

(b

WAVELENGTH - MICRONS

The correlated color temperature of the HR400RDSFL33 lamp is 3900k, x = .388, y = .384, initial lumens are 15,500, mean lumens are 9,950 over 24,000 hours rated life. The spectral distribution curve for the lamp is enclosed 124

	Total		104		135	
_	Above	Z80 nm	50-72		62	
is enclosed	Between	380-780	37.3		29	
משפו משם ומשם	Less than	<u> </u>	4-7		 	
Pasolone at deal and the tall the section of	Wavelength	M1L-STD-810C	Watts/Sq.Ft.	HR400RDXFL33	marcay od. ft.	
4						

20

250 WATT

Matt Rearder

Post-It Fax Note

7571

0
ĕ
-
4
N
>
2
_
UR
0
E
2
⋩

0
0/26/90
10
SOE,
JRM/A